- 5. Андросова, А. Ф. Влияние йода на воспроизводительные и продуктивные функции коров / А. Ф. Андросова // Зоотехния. 2003. № 10. С. 14-16.
- 6. Кучинский, М.П. Биоэлементы фактор здоровья и продуктивности животных: монография / М.П. Кучинский. Минск: Бизнесофсет, 2007. 372 с.
- 7. Кучинский, М. П. Основные факторы, влияющие на функционирование биологической системы «мать плод приплод молозиво» / М. П. Кучинский // Актуальные проблемы патологии сельскохозяйственных животных : сб. науч. тр. Минск, 2000. С. 505-508.
- 8. Самохин, В. Т. Дефицит микроэлементов в организме важнейший экологический фактор / В. Т. Самохин // Аграрная Россия. 2000. № 5. С. 69-72.
- 9. Трофимов, А. Ф. Влияние комплексного минерального препарата (КМП) на продуктивность и воспроизводительные функции коров / А. Ф. Трофимов, М. И. Муравьева // Вестник Белорусской государственной сельскохозяйственной академии. -2005. -№ 1. C. 89-91.

Поступила 28.03.2013 г.

УДК 636.2.033

С.В. СИДУНОВ, И.С. ПЕТРУШКО, С.А. ПЕТРУШКО, Р.В. ЛОБАН, В.И. ЛЕТКЕВИЧ

БИОХИМИЧЕСКИЙ СОСТАВ КРОВИ МАТОЧНОГО ПОГОЛОВЬЯ АБЕРДИН-АНГУССКОЙ ПОРОДЫ В ПРОЦЕССЕ АДАПТАЦИИ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Припятское Полесье занимает значительную часть двух южных областей республики и отличается от других регионов большим количеством лугов и пастбищ, высокой степенью риска возделывания растениеводческой продукции из-за частых заморозков в поздний весенний, ранний летний и раннеосенний периоды.

В целом климатические условия Припятского Полесья весьма благоприятны для развития продуктивного животноводства. Развитие отрасли мясного скотоводства в этом регионе, как и в целом по республике, должно осуществляться не только за счет закупа чистопородного скота, но и путем создания массивов помесных мясных стад на основе скрещивания низкопродуктивных коров молочного и комбинированного направления продуктивности с быками мясных пород, а также создания новых мясных пород. При этом правильный выбор пород для разведения в конкретных природно-климатических условиях, с учетом акклиматизационных способностей животных, является важнейшим фактором успешного развития мясного скотоводства.

Поскольку Государственной программой предусматривается массовый завоз в регион мясного скота из-за рубежа, возникает необходимость изучения продуктивных, племенных и акклиматизационных качеств скота разных пород, перемещенных из других природноклиматических зон с тем, чтобы правильно определиться с оптимальным размещением животных и организацией эффективной работы по их дальнейшему использованию.

Хозяйственно-полезные признаки, наследуемые животными, во время акклиматизации обусловлены глубокими изменениями обмена веществ, так как рост, развитие и мясная продуктивность тесно взаимосвязаны с последним. Обменные функции, связанные с перевариванием и всасыванием пищи, протекают, как известно, в двух направлениях: во-первых, в непрерывной смене составных частей крови и тканевых элементов; во-вторых, мобилизации больших количеств воды, белков и минеральных веществ, что влияет на течение промежуточного и общего обмена веществ, химический состав костей и тела [1, 2].

Установлено, что общее количество крови в организме животного в процессе онтогенеза с рождения до 7-8 лет увеличивается в 9 раз, хотя относительно животного количество крови почти постоянно. Определено также, что возрастные изменения гематологических показателей идут параллельно изменениям живой массы, но с разной скоростью. Они обусловлены обменом веществ и колебаниями условий внешней среды [3].

На состав крови крупного рогатого скота большое влияние оказывают уровень кормления и полноценность рационов. При понижении уровня кормления нередко резко уменьшается в крови содержание гемоглобина и повышается щелочной резерв [4, 5].

Таким образом, научные исследования по изучению акклиматизационных способностей животных абердин-ангусской породы позволят выявить ее достоинства и разработать мероприятия по дальнейшему эффективному использованию породы.

Проведение анализа оценки показателей продуктивных качеств животных импортных пород после их акклиматизации будет являться отправной точкой эффективного использования этих пород в процессе создания отрасли мясного скотоводства.

Материал и методика исследований. Изучение акклиматизационных и адаптационных способностей маточного поголовья абердинангусской породы проведено в СХК «Лясковичи» Петриковского района в феврале 2012 года, путем сопоставления показателей, отражающих степень приспособленности к новым природно-климатическим и хозяйственным условиям животных импортной 0 и 1 г.э.г. и отечественной селекции.

Под наблюдением находились завезенные животные абердинангусской породы — I и II группа: 0 генетико-экологическая генерация (г.э.г.), а также полученные от них телочки — 1 г.э.г., III и IV группа: животные абердин-ангусской породы отечественной селекции.

Схема научных исследований представлена в таблице 1.

Таблица 1 – Схема исследований

Порода	Поло-	Количе-	Учетный период
	возрас-	ство жи-	
	тные	вотных,	
	группы	голов	
	I	30	от второй половины
Абердин-ангусская	нетели,		стельности до отъема
(венгерская	коровы		телят
селекция)	II	10	от рождения до отъе-
	телочки		ма
	III	30	от второй половины
Абердин-ангусская	нетели,		стельности до отъема
(отечественная	коровы		телят
селекция)	IV	10	от рождения до отъе-
	телочки		ма

Группы I и III были сформированы из нетелей и коров с учетом возраста, срока стельности, упитанности и живой массы, а II и IV — из телочек, полученных от подопытных животных с учетом даты рождения и живой массы. Экспериментальная часть работы охватила вторую половину стельности нетелей, их отел и период подсосного выращивания телят до отъема в 6-8-месячном возрасте. Далее наблюдения за подопытными животными 0 г.э.г. продолжатся до второго отела коров.

В ходе исследований были изучены гематологические показатели (у пяти животных каждой группы, с определением в крови эритроцитов, тромбоцитов, лейкоцитов, гемоглобина, лимфоцитов на приборе Medonic CA 620); биохимические показатели крови: содержание в сыворотке общего белка, альбуминов, глобулинов (α_1 , β , γ), отношение альбуминов к глобулинам (A/ Γ) на приборе Cormay Lumen.

Рационы для животных были составлены с учетом возраста, пола и живой массы ежемесячно, а также при смене кормов с расчетом получения среднесуточных приростов 800-900 г за весь период выращивания по нормам ВГНИИЖ [6]. Планируемые структура кормов и интенсивность роста молодняка были приняты с учётом средних показателей производства животноводческой продукции в сельскохозяйственных организациях.

Основной цифровой материал обработан методом биометрической статистики по П.Ф. Рокицкому [7]. Из статистических показателей рассчитаны средняя арифметическая выборочной совокупности (М), средняя ошибка средней арифметической (m) с определением достоверности разности между качественными показателями. В работе приняты следующие обозначения уровня значимости: * - P<0,05.

Результаты эксперимента и их обсуждение. При проведении гематологических исследований установлено (таблица 2), что у коров и нетелей венгерской и отечественной селекции при сравнительном анализе, количество эритроцитов (RBC) было на уровне $6,65-6,80\times10^6/\text{мм}^3$ с превышением на $0,15\times10^6/\text{мм}^3$, или на 2,3 %, у животных венгерской селекции.

Таблица 2 – Морфологический состав крови телочек, нетелей и первотелок

		Показатели				
Поло- возрас- тные группы	Се- лек- ция	эритроци- ты (RBC), млн./мм ³	средний объем эритроци- тов (MCV), мкм ³	ширина распреде- ления эритроци- тов (RDW), %	гематок- рит (НСТ), %	
I (n=5) нетели, коровы	им-	6,80±0,10	42,52±1,21	26,0±1,19	32,72±1,23	
II (n=5) телоч- ки	порт ная	6,03±0,11	40,50±0,54	22,16±2,88	32,94±1,81	
III (n=5) нетели, коровы	оте-	6,65±0,45	42,10±2,21	26,08±1,21	30,70±2,58	
IV (n=5) телоч- ки	стве нная	6,33±0,22	39,76±0,84	28,74±1,19	33,26±0,69	

Средний объем (MCV) и ширина распределения эритроцитов (RDW) у маточного поголовья обеих групп составили 42,10-42,52 мкм³ и 26,0-26,08 %, соответственно, при больших значениях среднего объема эритроцитов в пользу коров венгерской селекции на 0,42 мкм³, или на 1,0 %. Показатель гематокрита (HCT), т. е. соотношения объема

эритроцитов к объему плазмы крови, отмечен в пределах 30,70-32,72 %, что на 2,02 % выше, чем у животных отечественной селекции.

По количеству тромбоцитов (PLT) и лейкоцитов (WBC) в крови (таблица 3) между группами взрослого скота имелись незначительные различия в пределах $6.2~\rm thc./mm^3$ (при уровне $283.4~\rm u~289.6~\rm thc./mm^3$), $0.02~\rm thc./mm^3$ ($11.1~\rm u~11.12~\rm thc./mm^3$), соответственно.

Таблица 3 – Морфологический состав крови телочек, нетелей и первотелок

		Показатели				
Поло- возрас- тные группы Се- лек- ция		тромбоциты (PLT), тыс./мм ³	лейкоциты (WBC), тыс./мм ³	гемогло- бин (HGB), г/дцл	средняя концен- трация ге- моглобина (МСНС), pg	
I (n=5) нетели, коровы	им-	289,6±16,95	11,12±0,50	11,0±0,47	37,62±0,50	
II (n=5) телоч- ки	порт ная	311,4±21,54	11,44±0,22	11,76±0,19	42,94±2,63	
III (n=5) нетели, коровы	оте-	283,4±10,78	11,10±0,55	11,82±0,24	38,76±1,85	
IV (n=5) телоч- ки	стве нная	296,0±12,32	10,34±0,48	11,80±0,18	37,88±1,63	

При уровне гемоглобина (HGB) 11,0 и 11,82 г/дцл, средняя концентрация его (МСНС) составила 37,62 и 38,76 рд, соответственно, у животных импортной и отечественной селекции.

Состав крови ремонтного молодняка (телочек) в возрасте 6-8 месяцев был следующим: RBC $-6.03-6.33 \times 10^6/\text{мм}^3$, MCV -39.76-40.5 мкм³, RDW -22.16-28.74 %, HCT -32.94-33.26 %, PLT -296.0-311.4 тыс./мм³, WBC -10.34-11.44 тыс./мм³, HGB -11.76-11.8 г/дцл, MCHC -37.88-42.94 pg.

Доказано, что белки крови поддерживают нормальное коллоидноосмотическое давление, постоянство рН тканей, составляют около 10% буферной системы крови, принимают участие в транспортировке различных веществ, связаны с водно-солевым обменом, играют большую роль в питании тканей, а также выполняют защитные функции организма. Общего белка в крови здоровых коров содержится в среднем 7% с колебаниями от 5,9 до 9,6 %. В плазме крови сухое вещество составляет 8-10 %, в том числе органические и неорганические вещества - 0.8-0.9 % [8, 9].

Наибольший удельный вес в сыворотке крови занимают альбумины, играющие важную роль в коллоидно-осмотическом давлении и выполняющие транспортную функцию, состоящую в связывании и переносе жирных кислот, холестерина и других веществ. Другие фракции белка представлены альфа-, бета- и гамма-глобулинами. Альфаглобулиновая фракция состоит из липопротеида, а бета-глобулин – из липопротеида и трансферина. Он имеет большое значение в переносе жира, каротина и различных витаминов. Гамма-глобулиновая фракция включает большинство антител сыворотки крови и иммунных белков. Более высокое содержание глобулинов наблюдалось практически во все возрастные периоды. Важно также отметить, что относительно низкое содержание альбуминов при высокой концентрации глобулиновых фракций в отдельные возрастные периоды совпадает с высокими приростами животных [9, 10].

При анализе биохимических показателей сыворотки крови подопытных животных установлено (таблицы 4, 5), что количество альбуминов составило от 32,9 до 33,56 г/л у взрослых животных, с превышением на 0,66 г/л в пользу коров отечественной селекции.

Таблица 4 – Состав сыворотки крови телочек, нетелей и первотелок по

содержанию альбуминов, α₁-глобулинов и β-глобулинов

Поло-	Ce-	Показатели					
возрас-	лек	альбумины		α_1 -глобулины		β-глобулины	
тные группы	ция	%	г/л	%	г/л	%	г/л
I (n=5) нетели, коровы	им-	41,74 ±1,62	32,90 ±1,19	7,54± 0,70	5,95± 0,54	15,68 ±1,27	12,36 ±1,01
II (n=5) телочки	тна я	44,53 ± 0,62	35,36 ±0,57	6,68± 0,68	5,29± 0,51	13,34 ±0,95	10,58 ±0,71
III (n=5) нетели, коровы	оте че- ств	44,45 ±1,06	33,56 ±0,85	6,66± 0,55	5,34± 0,44	15,80 ±0,70	12,66 ±0,54
IV (n=5) телочки	ен- ная	40,53± 1,30*	32,03 ±1,0*	7,91± 1,17	6,24± 0,92	12,76 ±0,68	10,08 ±0,51

Таблица 5 – Состав сыворотки крови телочек, нетелей и первотелок по

содержанию у-глобулинов и в целом общего белка

Поло-	Ce-		Показатели				
возрас- тные	лек	γ-глобулины		отношение альбумины /	общий белок, г/л		
группы	ция	%	г/л	глобулины			
I (n=5)							
нетели,	им-	26,14±1,63	20,64±1,37	$0,72\pm0,05$	78,88±0,69		
коровы	пор						
II (n=5)	тная	26,86±1,77	21,34±1,48	0,80±0,02	79,40±0,36		
телочки		20,00±1,77	21,34±1,40	0,00±0,02	77,40±0,50		
III (n=5)	оте-						
нетели,	чес-	25,0±1,06	$20,07\pm0,89$	$0,80\pm0,03$	$80,24\pm0,22$		
коровы	твен						
IV (n=5)	ная	30,20±0,73	23,88±0,71	0,68±0,04*	79,04±0,44		
телочки		30,20±0,73	23,00±0,71	0,00±0,04	77,04±0,44		

Телочки имели следующие показатели по содержанию альбуминов в крови: импортной селекции – 35,36 г/л, отечественной – 32,03 г/л, что было больше на 3,33 г/л, или на 10,4 % у телочек импортной селекции.

Содержание В-глобулинов составило 12,36-12,66 г/л у взрослых животных, 10,08-10,58 г/л – у молодняка, со значительным превосходством на 2,08-2,28 г/л у коров и нетелей по сравнению группами телочек.

Отношение А/Г у подопытных коров и нетелей составило 0,72 ед. (импортные) и 0,8 ед. (отечественные), с превышением на 0,08 ед. у взрослых животных белорусской селекции. Уровень данного показателя у молодняка отмечен в пределах от 0,68 до 0,8 ед., в пользу телочек венгерской селекции. Общего белка в крови у коров и нетелей было 78,88-80,24 г/л, что на 1,36 г/л, или на 1,7 %, больше у животных отечественной селекции, телочек - 79,04-79,4 г/л, при наличии незначительного отличия между группами – 0,36 г/л.

Таким образом, изучение акклиматизационных способностей импортированных животных абердин-ангусской породы показало высокую адаптационную способность скота к изменяющимся условиям внешней среды в условиях отрицательных температур зимы в Беларуси. Это подтверждается тем, что основные биохимические и гематологические показатели крови завезенных животных находились в пределах физиологической нормы и не имели существенных различий по сравнению с аналогичными показателями крови животных белорусской селекции.

Заключение. Маточное поголовье абердин-ангусской породы импортной селекции СХК «Лясковичи» Петриковского района показало высокую адаптационную способность скота к изменяющимся условиям внешней среды в условиях отрицательных температур зимы в Беларуси. Показатели акклиматизационных и адаптационных способностей коров и нетелей венгерской и отечественной селекции соответствовали физиологическим нормам. При сравнительном анализе количество эритроцитов (RBC) было на уровне $6,65-6,80\times10^6/\text{мm}^3$ с превышением на $0,15\times10^6/\text{мm}^3$, или на 2,3% у животных венгерской селекции. Показатель гематокрита (HCT) отмечен в пределах 30,70-32,72%, что на 2,02% выше, чем у животных отечественной селекции. При уровне гемоглобина (HGB) 11,0 и 11,82 г/дцл средняя концентрация его (МСНС) составила 37,62 и 38,76 рg, соответственно, у животных импортной и отечественной селекции. Общего белка в крови у коров и нетелей было на 1,36 г/л, или на 1,7%, больше у животных отечественной селекции, телочек -79,04-79,4 г/л, при наличии незначительного отличия между группами -0,36 г/л.

Литература

- 1. Чернов, Г. А. Акклиматизация абердин-ангусского скота в СССР/ Г. А. Чернов // Проблемы мясного скотоводства : сб. науч. тр. / ВНИИМС. Оренбург,1972. С. 138-143.
- 2. Зелепухин, А. Г. Мясное скотоводство / А. Г. Зелепухин, В. И. Левахин. Оренбург : ОГУ, 2000.-350 с.
- 3. Белоусов, А. М. Акклиматизация скота герефордской, шортгорнской, абердинангусской пород в СССР / А. М. Белоусов, П. Е. Жорноклей, Г. А. Чернов // Селекция, гибридизация и акклиматизация сельскохозяйственных животных : сб. науч. тр. / ВАСХНИЛ. М. : Колос, 1983. С. 85-89.
- 4. Кветковская, А. В. Акклиматизационные способности скота пород шароле и менанжу в природно-климатических условиях Беларуси : автореф. дис. ... канд. с.-х. наук : 16.00.08 / Кветковская А.В. Жодино, 1984.-20 с.
- 5. Козырь, В. С. Адаптация мясного скота в степной зоне Украины / В. С. Козырь // Зоотехния. 2005. № 5. С. 22-26.
- 6. Нормы и рационы кормления сельскохозяйственных животных : справ. пособие / А. П. Калашников [и др.]. 3-е изд., перераб. и доп. М., 2003. 426 с.
- 7. Рокицкий, П. Ф. Биологическая статистика / П. Ф. Рокицкий. Мн. : Вышэйшая школа, 1967. 326 с.
- 8. Колесников, И. К. Естественная резистентность стельных коров в условиях различной технологии содержания / И. К. Колесников // Тр. ВНИИЭВ. Мн., 1980. Т. 52. С. 79-83.
- 9. Кобозев, В. И. Зоогигиена с основами ветеринарии : учеб. пособие / В. И. Кобозев, Л. Л. Жук. Мн. : Ураджай, 2001. 421 с.
- 10. Ажмулдинов, Е. А. Клинико-физиологическое состояние маточного поголовья и телок в условиях стойлового и пастбищного содержания / Е. А. Ажмулдинов // Юбилейный выпуск науч. тр. ВНИИ мясного скотоводства. Оренбург, 2000. Вып. 53. С. 372-377.

Поступила 21.03.2013 г.