ванных овариальных фолликулов в 4 мл культуральной среды в течение 24-27 часов позволяет получать 51,7-53,8 % клеток, пригодных к оплодотворению, и 16,6-27,3 % дробящихся зародышей после оплодотворения.

Комплексное применение среды TC-199 M с монослоем соматических клеток гранулезы способствует оплодотворяемости деконсервированных ооцитов коров на уровне 15,2 % с сохранением способности к дальнейшему развитию у 40,0 % зародышей.

Литература

- 1. Генетика, селекция и биотехнология в скотоводстве / под ред. М. В. Зубец, В. П. Буркат. Киев, 1999. 722 с.
- 2. Безуглий, М. Д. Методи биотехнологіі відтворення сільськогосподарських тварин. X., 2002. 155 с.
- 3. Руткис, 3. А. Зависимость криорезистентности ооцитов коров при витрификации от исходного состояния их кумулюса / З. А. Руткис // Современные методы повышения продуктивности сельскохозяйственных животных : сб. науч. тр. СПб, 2001. С. 228-231.
- 4. Троцкий, П. А. Использование пайетт с различным диаметром для криоконсервирования ооцит-кумулюсных комплексов коров / П. А. Троцкий // Современные достижения и проблемы биотехнологии сельскохозяйственных животных : материалы 6-ой междунар. науч. конф. Дубровицы, 2006. С. 192-194.
- 5. Усовершенствованная технология получения ранних зародышей вне организма для ускоренного размножения и сохранения высокоценных животных в скотоводстве / А. И. Ганджа [и др.]. Жодино, 2011. 35 с.
- 6. Abilities of cumulus and granulose cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects / S. Ikeda [et al.] // Reproduction. 2006. Vol. 132. P. 549-557.

(поступила 5.03.2-12 г.)

УДК 636.4.082.31:612.017

Е.И. ЛИНКЕВИЧ, Т.В. ЗУБОВА, Е.И. ШЕЙКО, Д.М. БОГДАНОВИЧ

ПОКАЗАТЕЛИ БИОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ КРОВИ И СПЕРМЫ ХРЯЧКОВ В УСЛОВИЯХ АДАПТАЦИИ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Приспособление животных, перемещаемых из одной экологической зоны в другую, тесно связано со степенью устойчивости организма к воздействию факторов внешней среды. Для всесторонней оценки физиологического состояния животных в условиях

адаптации большое значение имеет изучение биохимических показателей крови и естественной резистентности организма.

Способность спермиев к активному движению является одним из важнейших их свойств и показателем качества спермопродукции, так как от этого зависит конечный результат осеменения, степень разбавления эякулята а, следовательно, количество спермодоз и эффективность использования производителей. Известно, что для половых клеток характерен односторонний обмен веществ – диссимиляция. Спермии вне организма не могут усваивать питательные вещества из внешней среды, накапливать энергию и размножаться. В этих условиях жизнеспособность клеток осуществляется главным образом за счет распада накопленных в процессе развития собственных веществ протоплазмы и незначительного расщепления углеводов из окружающей их среды. Гликолиз и дыхание осуществляются в результате воздействия сложных ферментных систем.

Антонюк В.С., Ильинская Т.П. [1] установили, что активность сукцинат-дегидрогиназы и цитохромоксидазы является показателем качества спермопродукции. Высокий уровень активности этих ферментов в свежей сперме способствует хорошей подвижности спермиев. Он имеет положительную корреляцию с подвижностью, концентрацией спермиев, их способностью сохранять двигательную функцию после хранения при низких температурах, а также способствует повышению оплодотворяющей способности спермы. Изучение воспроизводительной способности животных позволяет более качественно охарактеризовать завозимые породы и определить целесообразность их разведения в определенной климатической зоне.

Целью исследований было определение биохимического состава крови и спермы хрячков импортных пород, а также их оплодотворяющей способности в период адаптации.

Материал и методика исследований. Исследования проведены в ГП «ЖодиноАгроПлемЭлита» Смолевичского района на хрячках и свиноматках породы ландрас и йоркшир французской селекции. Получение, оценка и разбавление спермы проводили в соответствии с «Инструкцией по искусственному осеменению свиней» [2].

Изучены биохимические показатели спермы и крови, а также ее естественная резистентность.

С целью изучения оплодотворяющей способности спермы хряков сформированы две группы маток (пород йоркшир и ландрас), отобранных по принципу пар-аналогов, с содержанием по 30 голов в каждой.

Осеменяли свиноматок искусственно, свежеполученной спермой хряков, разбавленной глюкозо-хелато-цитратно-сульфатной средой, сразу после выявления охоты и через 24 часа после первого осемене-

ния по схеме закрепления. Доза вводимой спермы составляла 100 мл при концентрации не менее 3 млрд. активных спермиев.

Результаты эксперимента и их обсуждение. Нами изучен биохимический состав крови хряков породы ландрас и йоркшир в возрасте 7 и 10 месяцев. Данные показатели крови представлены в таблице 1.

Таблица 1 – Биохимический состав крови хряков

	Порода			
Показатели	ландрас	йоркшир	ландрас	йоркшир
	в 7 месяцев		в 10 месяцев	
Fe, мкмоль/л	20,37	21,81	21,73	23,06
Са, ммоль/л	2,69	2,57	2,62	2,72
Mg, ммоль/л	1,14	1,27	1,13	1,54
Р, ммоль/л	3,75	2,99	2,70	3,21
К, ммоль/л	6,32	6,29	6,09	6,41
Глюкоза, ммоль/л	2,64	3,05	3,20	3,20
Белок, г/л	71,41	74,18	69,90	79,23
Мочевина, ммоль/л	5,44	5,38	6,14	5,88

Выявлена возрастная динамика в сторону увеличения макроэлементов в крови животных, что указывает на усиление обменных процессов в организме. Однако содержание железа у всех хрячков было ниже физиологической нормы.

Важным компонентом сыворотки крови являются белки, характеризующие интенсивность метаболизма в организме животных и состояние их здоровья. В нашем опыте содержание общего белка в сыворотке крови свиней породы йоркшир в 10-месячном возрасте было выше, чем в 7-месячном, а по породе ландрас наблюдалось незначительное снижение этого показателя.

Определение глюкозы и мочевины показало, что в организме хрячков, как породы ландрас, так и йоркшир, наблюдалось их увеличение с возрастом.

В качестве основных показателей естественной резистентности организма мы определяли бактерицидную, лизоцимную и бетализиновую активность сыворотки крови (таблица 2).

При исследовании гуморальных факторов защиты организма установлено, что уровень как лизоцимной, так и бактерицидной и бетализиновой активности сыворотки крови хрячков изучаемых пород с возрастом различался незначительно.

Способность спермиев к активному движению является одним из основных показателей качества спермопродукции и эффективности использования производителей.

Таблица 2 – Показатели естественной резистентности сыворотки крови

Порода	Лизоцимная	Бактерицидная	Бетализиновая	
	активность, %	активность, %	активность, %	
в 7 месяцев				
ландрас	14,8±0,7	72,8±0,9	24,3±0,8	
йоркшир	$15,0\pm0,8$	$71,5\pm1,0$	$24,7\pm0,7$	
в 10 месяцев				
ландрас	15,4±0,6	71,2±1,1	25,1±0,7	
йоркшир	$15,9\pm0,7$	72,8±0,9	26,1±0,6	

В условиях одностороннего обмена веществ (диссимиляции) жизнеспособность клеток осуществляется главным образом за счет распада накопленных в процессе развития собственных веществ протоплазмы и незначительного расщепления углеводов из окружающей их среды. Гликолиз и дыхание осуществляются в результате воздействия сложных ферментных систем, которые, участвуя в реакциях биологического окисления, влияют на процессы жизнедеятельности спермиев вне организма. Из ферментов, которые принимают непосредственное участие в дыхании спермиев, изучены дегидрогеназа и оксидаза.

Активность гликолитических ферментов в зависимости от породы представлена в таблице 3.

Таблица 3 – Показатели активности гликолитических ферментов в 10 месячном возрасте

	Гликолитические ферменты			
Порода	активность сукцинатде-	активность цитохромок-		
	гидрогеназы, мин	сидазы, ед.активности		
ландрас	7'31"±22"	0,267±0,03		
йоркшир	6'48"±19"	$0,279\pm0,02$		

Установлена взаимосвязь между активностью сукцинатдегидрогеназы и цитохромоксидазы. Если активность сукцинатдегидрогеназы была самой высокой у хряков породы йоркшир, то и цитохромоксидаза у этих же животных отличалась наибольшей активностью.

Следовательно, здоровый организм – это нормально развитый организм, без существенных отклонений от физиологической нормы, присущей данному виду, породе, возрасту и полу. Только он обладает способностью приспосабливаться к новому режиму содержания.

Во время проведения исследований осуществляли ежедневный контроль за общим состоянием организма свиноматок с целью своевременного выявления у них признаков эструса. Охоту определяли с помощью хряка-пробника. Для этого угром и вечером к свиноматкам с

признаками охоты подпускали хряка-пробника. По рефлексу неподвижности устанавливали наличие охоты. Ее началом считали среднее время между двумя проверками, в последней из которых выявлена охота. Если осеменение проводят в запоздалый срок по отношению ко времени овуляции, то отрицательное влияние на плодовитость проявляется в снижении оплодотворяемости, абортах и повышении гибели эмбрионов, у многоплодных видов эти аномалии уменьшают размер помета. Время осеменения является предопределяющим фактором предупреждения старения половых клеток.

Пониженная плодовитость часто наблюдается в тех случаях, когда осеменение проводят после овуляции. В этих условиях к моменту проникновения спермиев в яйцеклетку ее возраст еще больше увеличивается вследствие необходимого времени для капацитации и достижения участка слияния. Увеличение эмбриональной смертности также может быть результатом оплодотворения стареющих яйцеклеток, так как они более длительно остаются способными к оплодотворению, чем сохраняют способность к развитию нормального эмбриона.

Важным показателем, характеризующим биологическую полноценность половых клеток, и одним из основных признаков качества спермы является ее оплодотворяющая способность (таблица 4).

Таблица 4 – Оплодотворяемость свиноматок после осеменения

Порода	Осеменено,	Оплодотворяемость	
	голов	голов	%
ландрас	30	25	83,3
йоркшир	30	24	80,0

Оплодотворяемость свиноматок породы ландрас была выше на 3,3% по сравнению с их сверстницами породы йоркшир, следовательно, свиньи породы йоркшир легче перенесли условия адаптации.

Заключение. Определена взаимосвязь между активностью сукцинат-дегидрогеназы и цитохромоксидазы. Если активность сукцинатдегидрогеназы была самой высокой у хряков породы йоркшир, то и цитохромоксидаза у этих же животных отличалась наибольшей активностью. Установлена возрастная динамика в сторону увеличения макроэлементов в крови животных, что указывает на усиление обменных процессов в организме. При исследовании гуморальных факторов защиты организма установлено, что уровень как лизоцимной, так и бактерицидной и бетализиновой активности сыворотки крови хрячков изучаемых пород с возрастом различался незначительно. Оплодотворяемость свиноматок породы ландрас была выше на 3,3 % по сравнению с их сверстницами породы йоркшир. Таким образом, свиньи по-

роды йоркшир легче перенесли условия адаптации.

Литература

- 1. Антонюк, В. С. Метаболитические процессы в сперме хряка с различной концентрацией спермиев в эякуляте / В. С. Антонюк, Т. П. Ильинская // Зоотехническая наука Беларуси: сб. науч. тр. / БелНИИЖ. Мн.: Ураджай, 1980. Т. 21. С. 32-34.
- 2. Инструкция по искусственному осеменению свиней / Е. В. Раковец [и др.]. Мн., 1998. 38 с.

(поступила 7.02.2012 г.)

УДК 636.424(476):636.082.22

Н.А. ЛОБАН, О.Я. ВАСИЛЮК, С.М. КВАШЕВИЧ

ОЦЕНКА РЕПРОДУКТИВНЫХ КАЧЕСТВ СВИНОМАТОК БЕЛОРУССКОЙ КРУПНОЙ БЕЛОЙ ПОРОДЫ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Использование научно-технических разработок в селекции свиней — наиболее надежный и высокоэффективный способ повышения продуктивности в племенном и товарном свиноводстве. Основа селекции — совершенствование пород свиней. Одним из самых основных показателей эффективности селекционной работы является многоплодие свиноматок.

Как известно, белорусская крупная белая порода является основной материнской породой в Республике Беларусь. Она рекомендована и широко используется в качестве материнской формы в различных схемах скрещивания и гибридизации в республике [1].

В результате целенаправленной селекционной работы в 2007 году в Республике Беларусь была создана белорусская крупная белая порода свиней [2]. Животные породы с высокой эффективностью используется для промышленного скрещивания как с животными белорусской черно-пестрой и белорусской мясной породами, так и с хряками специализированных мясных пород [3].

Каждая свиноматка белорусской крупной белой породы, используемой в системах промышленного скрещивания и гибридизации, дает в год по 22-24 поросят, что позволяет получить до 2-2,5 тонн свинины в убойном весе [4].

Таким образом, повышение продуктивности свиноматок породы является актуальной задачей. Селекционную работу с материнской