циона по балансу и ОЭ рациона, рассчитанной по сумме отдельных ОЭ кормов рациона. Например, в одном из проведённых нами физиологических исследований установлено, что в организм поступило из рациона 78,88 МДж ОЭ, в то же время сумма ОЭ отдельных кормов была равна 86,38 МДж, или выше от фактической на 9,5 %. Такое расхождение, по мнению разных авторов, закономерно и получило название «принцип аддитивной» — ОЭ рациона, ОЭ кормов рациона.

Литература

- 1. 1. Алиев, А. А. Превращение липидов в желудочно-кишечном тракте жвачных животных с разной жирномолочностью / А. А. Алиев, М. Ш. Кафаров // Животноводство. 1973. № 2. С. 68-70.
- 2. 2. Беркович, Е. М. Основы биоэнергетики сельскохозяйственных животных / Е. М. Беркович. М.: Колос, 1972. 112 с.
- 3. З. Цвигун, А. Т. Обоснование энергетического питания крупного рогатого скота: дисс. ... д-ра с.-х. наук / Цвигун А. Т. Каменец-Подольский, 1993. 533 с.
- 4. 4. Цюпко, В. В. Физиологические основы питания молочного скота / В. В. Цюпко. К. : Урожай, 1984. 152 с.
- 5. 7. Energy allowances and feeding system for ruminants : II Reference Book 433 / ARC. London, 1984. 85 p.
- 6. 6. Nering, K. Zur Problematik der Ermittlung des Futterwertes / K. Nering // Arche. Tier ernähr. 1980. Bd. 30, № 1-3. S. 199-214.
- 7. 5. Nutritional Energetics of Domestic Animals & Glossary of Energy Terms / NRC. Second Revised Edition. Washington: NATIONAL ACADEMY PRESS, 1990. 63 p.

(поступила 17.02.2011 г.)

УДК 636.2.053.084

Т.А. ШАУРА, И.И. ГОРЯЧЕВ

РЕЗИСТЕНТНОСТЬ И ПРОДУКТИВНОСТЬ ПЛЕМЕННЫХ БЫЧКОВ МОЛОЧНОГО ПЕРИОДА В ЗАВИСИМОСТИ ОТ УРОВНЯ МАКРОЭЛЕМЕНТОВ В РАЦИОНЕ

УО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины»

Введение. Биологически полноценное питание призвано служить научной основой для создания наиболее совершенных методов кормления и разведения, направленных на повышение усвоения и использования питательных веществ рационов [1].

Кормление племенных бычков должно обеспечивать их интенсивный рост, формирование крепкого костяка, плотной мускулатуры и высокой воспроизводительной способности [2]. Интенсивность роста и

возможность раннего использования в племенных целях является экономически выгодным, так как сокращается непродуктивный период жизни. Но при этом важно не допустить ожирения животных, что впоследствии приведёт к снижению воспроизводительных способностей. Интенсивное выращивание племенных бычков должно быть направлено не на откорм, а на гармоничное развитие. Чаще всего ожирение племенного молодняка возникает не в результате перекорма, а в результате несбалансированного кормления, из-за недостатка витаминов и минеральных веществ [3].

Главным условием, обеспечивающим интенсивность обмена веществ, является достаток и сбалансированное поступление в организм строительного материала, включающего органические и неорганические вещества. Хотя доля неорганической части в организме и невелика (около 4 %), их роль и значение в построении и функционировании живого организма трудно переоценить. На протяжении всей жизни требуется постоянный приток минеральных веществ с кормом и в достаточном ассортименте. Нет ни малейшего сомнения в оригинальности каждого из известных минеральных веществ, его специфической функции в организме. Это означает, что все минеральные вещества следует считать незаменимыми факторами питания животных [4].

Большое значение в кормлении молодняка крупного рогатого скота имеют кальций и фосфор. Удельный вес этих элементов составляет до 75 % от всех минеральных веществ организма. У телят на 1 кг прироста приходится около 12-16 г кальция и 7-9 г фосфора. Поступать эти вещества должны в значительно больших количествах, так как утилизируются они в организме лишь на 30-40 % [5]. Роль данных элементов в жизнедеятельности организма очень велика. Кальций служит материалом для построения костной ткани: почти 99 % находится в костяке и только 1 % в остальных тканях. Он необходим также для регулирования реакции крови и тканевой жидкости, возбуждения мышечной и нервной тканей, свёртывания крови. Фосфор по сравнению с кальцием биологически более активен: 80 % его содержится в скелете и 20 % в остальных тканях. Все виды обмена веществ – белковый, углеводный, нуклеиновый, липидный, минеральный и энергетический – так или иначе, связаны с обменом фосфора [6, 7, 8]. Велика роль кальция в поддержании защитных функций организма. Он влияет на проницаемость клеточных и внутриклеточных мембран, стимулирует ряд функций клеток иммунной системы, повышает фагоцитарную активность лейкоцитов и активизирует пропердиновую систему. Фосфор также влияет на поддержание функций мембран клеток, в том числе и иммунокомпетентных, входит в состав органических компонентов и биологических молекул. Соединения фосфора являются биологическими источниками энергии для обеспечения всех процессов жизнедеятельности организма [8, 9].

Таким образом, обеспеченность организма кальцием и фосфором влияет на поддержание естественных защитных сил и уровень продуктивности племенного молодняка.

Однако в нашей республике не проводились исследования влияния различных уровней данных макроэлементов в рационе на резистентность и продуктивность племенных бычков молочного периода. Поэтому нами была поставлена цель: изучить влияние повышенных доз кальция и фосфора в рационах на клинические показатели крови, состояние естественной резистентности и уровень продуктивности племенного молодняка до 6-месячного возраста.

Материал и методика исследований. Для достижения поставленной цели в РСУП «Племзавод «Кореличи» Кореличского района Гродненской области были сформированы три группы племенных бычков по 10 голов в каждой группе, с учётом возраста, живой массы и происхождения.

Опыт проводился в зимний период в течение 180 дней. Подопытные животные находились в одинаковых условиях кормления и содержания.

В начале опыта проведён зоотехнический анализ кормов, на основании которого каждой группе, дополнительно к основному рациону, в смеси с концентратами, вводили мел и монокальцийфосфат. При этом животные I контрольной группы получали кальций и фосфор в соответствии с нормами РАСХН (2003), II группы – на 10 %, III – на 20 % больше указанных норм (таблица 1). Кроме того, рационы были сбалансированы по микроэлементам согласно нормам РАСХН путём введения солей микроэлементов, по которым наблюдался дефицит в рационе [10].

Таблица 1 – Схема опыта

	Кол-во	Продол-	Условия		
	бычков	житель-	кормления бычков		
Группы	в груп-	ность			
	пе (n)	опыта,			
		дней			
I			Основной рацион (ОР) + мин.		
кон-	10		добавки		
трольная			(Са и Р по нормам РАСХН)		
II	10	180	OP + мин. добавки		
опытная	10		(норма РАСХН +10 % Са и Р)		
III	10		OP + мин. добавки		
опытная	10		(норма РАСХН +20 % Са и Р)		

Динамику живой массы бычков молочного периода и её прирост изучали путём индивидуального взвешивания в начале опыта и ежемесячно до его окончания. По данным результатов взвешивания определяли среднесуточный прирост.

Для исследования в начале и конце опыта у 5-ти животных из каждой группы были отобраны пробы крови, анализ которых проводили в биохимическом отделе НИИ прикладной ветеринарной медицины и биотехнологии УО «ВГАВМ» по общепринятым методикам. В сыворотке крови определяли общий белок и его фракции (альбумины и α-, β-, γ-глобулины) – рефрактометром ИРФ-22, кальций – колориметрическим методом с о-крезолфталеином, неорганический фосфор – колориметрическим методом с молибдатионами без депротеинизации, активность щелочной фосфатазы – кинетическим методом на автоматическом биохимическом анализаторе «Eurolyser».

В стабилизированной крови определяли гемоглобин, эритроциты, лейкоциты с использованием автоматического гематологического анализатора клеток «Abacus junior vet».

Фагоцитарную активность лейкоцитов определяли по В.И. Гостеву, лизоцимную активность сыворотки крови – по В.Г. Дорофейчуку, бактерицидную активность сыворотки крови – по Мюнселю и Треффенсу в модификации О.В. Смирновой и Т.А. Кузминой.

Цифровой материал обработан статистически на персональном компьютере с помощью $\Pi\Pi$ Exsel.

Результаты эксперимента и их обсуждение. В таблице 2 приведены показатели естественной резистентности подопытных бычков. По данным таблицы видно, что к концу опыта у животных ІІ группы лизоцимная активность сыворотки крови возросла на 2,5 % (P<0,05), бактерицидная активность сыворотки крови – на 10,9 % (P<0,05) и фагоцитарная активность лейкоцитов крови – на 14,2 % (P<0,01). Несколько выше возрастание этих показателей у животных ІІІ группы: 3% (P<0,05), 12,6 (P<0,05) и 15,8 % (P<0,01), соответственно. Возрастание ЛАСК, БАСК и ФАЛ в контрольной группе в 6-месячном возрасте относительно уровня этих показателей в начале опыта составило 1,42 %, 7 и 11,1 % (P<0,05), соответственно.

Следует отметить, что животные, имевшие повышенный уровень кальция и фосфора в рационах относительно норм РАСХН (2003), превзошли животных контрольной группы по всем представленным показателям в 6-месячном возрасте. Так, у бычков ІІ и ІІІ опытных групп лизоцимная активность сыворотки крови была выше на 1,2 и 15 %, бактерицидная активность — на 3,9 и 5,2 % и фагоцитарная активность лейкоцитов крови — на 4,3 и 6,9 % (Р<0,05) по сравнению с аналогами І группы.

Таблица 2 – Показатели неспецифической резистентности крови бычков

Показатели	Возраст,	Группа				
	мес.	I	II	III		
ЛАСК, %	1	4,32±0,33	4,40±0,59	4,28±0,60		
	6	$5,74\pm0,54$	6,92±0,51	$7,24\pm0,65$		
БАСК,%	1	52,16±2,80	52,10±3,58	51,66±4,18		
BACK,%	6	59,12±1,68	63,02±1,80	64,28±1,91		
ФАЛ,%	1	49,34±2,10	49,20±2,36	50,20±3,50		
	6	$59,14\pm2,08$	63,40±1,59	66,00±1,96*		

Примечание: * - Р<0,05

Полученные данные свидетельствуют о том, что повышение уровня кальция и фосфора в рационах племенных бычков молочного периода положительно повлияло на показатели естественной резистентности молодняка. Это можно связать с влиянием этих элементов на проницаемость клеточных и внутриклеточных лизосомных мембран. Кроме того, кальций способен повышать фагоцитарную активность лейкоцитов, чем объясняется достоверное увеличение этого показателя в ІІІ опытной группе, где норма изучаемых элементов была увеличена на 20%.

Содержание в крови общего белка является одним из показателей обеспеченности организма животных пластическими и питательными веществами. Результаты исследований показали, что в начале опыта концентрация общего белка в сыворотке крови телят контрольной и опытных групп находилась приблизительно на одном уровне (таблица 3) и колебалась в пределах от 62,4 до 63,8 г/л. Также по группам не наблюдалось больших различий в соотношении фракций белка.

Таблица 3 – Динамика состава белка плазмы крови племенных бычков

Груп	Общий	Альбу-	Глобулины, %				
ПЫ	белок, г/л	мины, %	% α β		γ		
Начало опыта							
I	63,8±1,81	42,6±1,61	$18,7\pm0,41$	15,8±0,58	23,0±0,96		
II	$62,4\pm2,00$	42,9±1,96	$18,4\pm0,42$	$16,0\pm0,40$	22,5±1,69		
III	62,7±2,01	$42,0\pm1,80$	$18,7\pm0,49$	$16,0\pm0,56$	23,2±0,98		
Конец опыта							
I	68,0±2,00	42,8±0,47	$17,8\pm0,61$	15,4±0,38	24,0±0,53		
II	$73,4\pm3,00$	$44,0\pm0,40$	$16,3\pm0,24$	$13,3\pm0,37$	26,4±0,72*		
III	75,2±1,80*	45,1±0,53*	$16,7\pm0,30$	$10,9\pm0,39$	27,3±0,87*		

Примечание: * – Р<0,05

В 6-месячном возрасте в сыворотке крови подопытных бычков наблюдались существенные различия по содержанию общего белка. Так, во II опытной группе содержание его составило 73,4 г/л, что на 7,9 % больше по сравнению с контрольной группой, содержание белка в крови которых составило 68,0 г/л. Этот показатель у III опытной группы составил 75,2 г/л, что на 10,6 % (Р<0,05) больше по сравнению с контролем.

Вместе с увеличением общего белка во всех группах произошло перераспределение белковых фракций в сторону увеличения альбуминов и гаммаглобулинов. У бычков II и III групп в возрасте 6 месяцев содержание альбуминов увеличилось на 1,2 и 2,3 % (P<0,05), соответственно, по сравнению с молодняком I группы.

При этом содержание γ -глобулинов в крови животных контрольной группы составило 24,0 %, что на 2,4 % (P<0,05) меньше, чем во II группе, и на 3,3 % (P<0,05) ниже, чем в III группе. Полученные данные свидетельствуют об активизации метаболизма белка и повышении неспецифической реактивности животных опытных групп.

В ходе анализа крови подопытных животных установлено, что все клинические показатели находились в пределах физиологической нормы. Результаты гематологических исследований представлены в таблице 4.

Таблица 4 – Биохимические показатели крови подопытных бычков

Tuomique : Brownin reekite nokusutem kpobi nogenbritibik obi ikob						
	Группы					
Поморожани	I	II	III	I	II	III
Показатели	Возраст					
	1 мес.			6 мес.		
Эритроциты,	6,41±	6,53±	6,33±	6,78±	$7,40 \pm$	7,53±
$10^{12}/\pi$	0,13	0,14	0,20	0,20	0,30	0,2*
Гемоглобин,	94,3±	95,2±	94,7±	103,8±	107,3±	108,7±
г/л	1,4	1,2	0,8	1,3	1,3	1,4*
Активность						
щелочной						
фосфатазы,	3351,9	3379,0	3364,4	2156,6	1923,6	1789,4±
нкат/л	±101,0	±94,8	±99,7	±91,4	±106,8	106,3*
Кальций,	2,23±	2,18±	2,21±	2,75±	2,91±	2,98±
ммоль/л	0,05	0,08	0,03	0,07	0,08	0,05*
Фосфор,	1,17±	1,19±	1,17±	1,49±	1,61±	1,68±
ммоль/л	0,04	0,03	0,08	0,06	0,04	0,04*

Примечание: * - Р<0,05

Животные II опытной группы в 6-месячном возрасте превзошли

молодняк I контрольной группы по содержанию в крови эритроцитов и гемоглобина на 9,1 и 3,4 %, соответственно. У бычков III опытной группы содержание эритроцитов в крови составило $7,53*10^{12}$ /л и гемоглобина – 108,7 г/л, что на 11,1 и 4,7 % выше при достоверной разнице с контролем (P<0,05). Это указывает на то, что повышение уровня кальция и фосфора в рационах племенных бычков молочного периода способствовало стимуляции процессов кроветворения.

В 6-месячном возрасте активность щелочной фосфатазы в крови бычков II опытной группы была ниже на 10.8%, III группы — на 17.0% (P<0,05), чем у аналогов I контрольной группы. Это свидетельствует о более интенсивной минерализации костяка бычков II и III опытных групп по сравнению с контролем.

В конце опыта содержание кальция и неорганического фосфора в сыворотке крови молодняка I контрольной группы составило 2,75 и 1,49 ммоль/л, что на 5,8 и 8,1 % меньше, чем у сверстников II группы, и на 8,4 и 12,8 % меньше (P<0,05) по сравнению с показателями III группы.

Таким образом, скармливание рационов с повышенным уровнем кальция и фосфора оказало положительное воздействие на клинические показатели крови и обмен веществ подопытных животных.

Одним из важнейших показателей, характеризующих степень развития животных, является живая масса (таблица 5).

Таблица 5 – Изменение живой массы бычков молочного периода

Показатели	Группы			
Показатели	I	II	III	
Живая масса, кг:				
в начале опыта	$32,0\pm0,8$	$31,7\pm1,0$	31,9±0,8	
в конце опыта	197,4±1,5	$200,6\pm2,1$	204,2±2,4*	
Валовой прирост, кг	165,4	168,9	172,3	
Среднесуточный прирост, г	918,9±13,2	938,3±12,4	957,2±11,7*	
% к контролю	100	102,1	104,2	
Затраты кормов на 1 кг при-				
роста, к. ед.	4,15	4,08	4,06	

Примечание: * - P < 0.05, ** - P < 0.01

По данным таблицы видно, что в начале опыта средняя живая масса бычков всех трёх групп находилась в близких пределах и составляла 31,7-32,0 кг.

Бычки II и III опытных групп превзошли животных I группы по среднесуточному приросту за период проведения опыта на 18,9 и 38,3 г, или на 2,1 и 4,2 %, соответственно. Конечная живая масса бычков 6-

месячного возраста существенно отличалась по группам. Так, средняя живая масса бычков II опытной группы составила 200,6 кг, что на 3,2 кг, или на 2,1 %, выше по сравнению с животными контрольной группы. Данный показатель в III группе составил 204,2 кг, что на 6,8 кг, или 4,2 % (P<0,05), выше по сравнению с результатом, полученным в контрольной группе. При этом животные III группы превзошли животных I группы на 3,6 кг, или на 2,1 %.

Затраты кормов на 1 кг прироста во II и III группах составили 4,08 и 4,06 к. ед., или на 1,7-2,2 % ниже по сравнению с I группой.

Таким образом, уровень кальция и фосфора в рационе повлиял на скорость роста подопытных животных, при этом самыми высокими показателями отличались бычки III группы, в рационе которых норма данных элементов была увеличена на 20 % по сравнению с нормами РАСХН (2003).

Заключение. 1. В результате исследований установлено, что применение повышенных уровней кальция и фосфора положительно отразилось на показателях естественной резистентности племенных бычков молочного периода. Так, у бычков II и III опытных групп лизоцимная активность сыворотки крови была выше на 1,2 и 15 %, бактерицидная активность – на 3,9 и 5,2 % и фагоцитарная активность лейкоцитов крови – на 4,3 и 6,9 % (Р<0,05) по сравнению с аналогами I группы.

- 2. В конце опыта во II и III группах содержание белка сыворотки крови было на 7,9 и 10,6 % (P<0,05) выше по сравнению с контролем. У бычков II и III групп в возрасте 6 месяцев содержание альбуминов увеличилось на 1,2 и 2,3 % (P<0,05), соответственно, по сравнению с молодняком I группы. При этом содержание γ -глобулинов в крови животных контрольной группы составило 24,0 %, что на 2,4 % (P<0,05) меньше чем во II группе и на 3,3% (P<0,05) ниже, чем в III группе.
- 3. Увеличение уровня кальция и фосфора в рационах ремонтного молодняка оказало положительное воздействие на биохимический состав крови подопытных животных. В крови ремонтного молодняка II опытной группы наблюдалось повышение гемоглобина на 9,1 %, эритроцитов на 3,4 % по сравнению со сверстниками I группы. У бычков III опытной группы наблюдалось достоверное увеличение этих показателей по сравнению с контролем на 11,1 и 4,7 %, соответственно. Повышение уровня кальция и фосфора в рационах племенных бычков на 10 % привело к увеличению их содержания в крови на 5,8 и 8,1 % (2,91 и 1,61 ммоль/л), а дальнейшее увеличение уровня до 20 % способствовало возрастанию их концентрации в сыворотке крови, соответственно, на 8,4 и 12,8 % (2,98 и 1,68 ммоль/л).
- 4. Скармливание племенным бычкам молочного периода рационов с повышенным, относительно норм PACXH (2003), уровнем кальция и

фосфора оказало положительное влияние на их скорость роста. Животные II и III опытных групп превзошли сверстников I контрольной группы по среднесуточному приросту за период проведения опыта, соответственно, на $18.9 \, \Gamma \, (2.1 \, \%)$ и $38.3 \, \Gamma \, (4.2 \, \%)$.

Литература

- 1. Сейранов, К. Н. Выращивание молодняка крупного рогатого скота с использованием комбикормов: престартера «Форсаж» и стартера «К-711К»: автореф. дисс. ... канд. с.-х. наук: 06.02.10; 06.02.08 / Сейранов К.Н. Дубровцы, 2010. 16 с.
- 2. Кормление сельскохозяйственных животных : учеб. пособие / В. К. Пестис [и др.]. Минск: ИВЦ Минфина, 2009. 540 с.
- 3. Марданов, Р. А. Эффективность использования минерально-витаминных премиксов при выращивании телят : дисс. ... канд. с.-х. наук : 06.02.02 / Марданов Р.А. Омск, 2003. 164 с.
- 4. Подобед, Л. И. Руководство по кальций-фосфорному питанию сельскохозяйственных животных и птицы / Л. И. Подобед. Одесса, 2005. 410 с.
- 5. Пестис, В. К. Кормление сельскохозяйственных животных : учеб. пособие. / В. К. Пестис, А. П. Солдатенко. Минск : Ураджай, 2000. 335 с.
- 6. Пономаренко, Ю. А. Корма, кормовые добавки и продукты питания : монография / Ю. А. Пономаренко. Минск : Экоперспектива, 2010. 736 с.
- 7. Физиологические и технологические аспекты повышения молочной продуктивности / Н. С. Мотузко [и др.]. Витебск : ВГАВМ, 2009. 490 с.
- 8. Холод, В. М. Клиническая биохимия сельскохозяйственных животных: учеб. пособие. В 2-х чч. Ч. 2 / В. М. Холод, А. П. Курдеко. Витебск: УО ВГАВМ, 2003. 167 с.
- 9. Зайцев, С. Ю. Биохимия животных. Фундаментальные и клинические аспекты: учебник / С. Ю. Зайцев, Ю. В. Конопатов. СПб: Лань, 2004. 384 с.
- 10. Нормы и рационы кормления сельскохозяйственных животных : справ. пособие / А. П. Калашников [и др.]. 3-е изд., перераб. и доп. М., 2003. 455 с.

(поступила 21.02.2011 г.)