- 5. Шлапунов, В. Н. Продуктивность озимых промежуточных культур при разных уровнях азотного питания / В. Н. Шлапунов, В. Л. Копылович // Земляробства і ахова раслін. 2006. № 5. С. 3-6.
- 6. Копылович, В. Л. Влияние сроков сева на урожайность поукосной викоовсяно-райграсовой смеси / В. Л. Копылович // Земледелие и селекция в Беларуси : сб. науч. тр. / Ин-т земледелия и селекции Нац. акад. наук Беларуси. Мн., 2005. Вып. 41. С. 99-104.
- 7. Шлапунов, В. Н. Эффективность поукосного выращивания сорго сахарного / В. Н. Шлапунов, В. Л. Копылович // Современное состояние, проблемы и перспективы развития кормопроизводства: материалы междунар. науч.-практ. конф. (Горки, 15-16 июня 2007 г.). Горки, 2007. С. 145-151.
- 8. Динамика формирования урожая сорго сахарного и его зависимость от уровня азотного питания / В. Н. Шлапунов [и др.] // Весці Нацыянальнай акадэміі навук Беларусі: Сер. аграрных навук. 2006. № 4. С. 16-19.
- 9. Сикорский, А. В. Энергоресурсосбережение в кормопроизводстве : рекомендации / А. В. Сикорский, В. Л. Копылович, П. Т. Пикун. Мозырь, 2007. 40 с.

(поступила 6.03.2009 г.)

УДК 636.2.085:577.121.7

А.Н. КОТ, В.Ф. РАДЧИКОВ, А.И. КОЗИНЕЦ, Н.В. ПИЛЮК

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ОБМЕННОЙ ЭНЕРГИИ В КОРМАХ НА ЭФФЕКТИВНОСТЬ ЕЁ ИСПОЛЬЗОВАНИЯ В ОРГАНИЗМЕ КРУПНОГО РОГАТОГО СКОТА

Введение. Среди всех факторов, оказывающих влияние на продуктивность скота, главным является кормление. С увеличением продуктивности значительно возрастают требования к качеству кормов и их способности удовлетворять потребности животных в питательных веществах.

Для повышения продуктивности необходимо не просто увеличить уровень потребления отдельных кормов, но и повысить в сухом веществе рациона концентрацию обменной энергии, оптимизировать её соотношение с протеином. Простое увеличение объёмов производства всех видов кормов, или наращивание «вала», не приводит к резкому росту продуктивности скота. Разработка и широкое внедрение в производство современных технологий заготовки кормов, быстрый рост продуктивности животных требуют адекватного повышения точности определения питательности кормовых средств. Особенно актуальна проблема оценки энергетической питательности кормов [1, 2, 3, 4].

Для скотоводства особенно большое значение имеют объёмистые корма, так как их доля в рационе скота более 50 %. Они составляют основу рационов крупного рогатого скота, определяют тип кормления,

количество и качество включаемых в рацион концентратов и кормовых добавок и в итоге уровень продуктивности. Чем хуже качество объёмистых кормов рациона скота, тем большее количество высокобелковых и высокоэнергетических концентратов нужно включать в рацион для обеспечения высокой продуктивности.

Обеспеченность животных энергией является одним из основных факторов, определяющих уровень продуктивности. При этом определяющее значение имеет научное обоснование энергетического баланса в организме животного [5].

Определение как обменной, так и чистой энергии продукции в кормах ведётся на основе их химического состава, переваримой энергии и питательных веществ, а также физиологических потерь энергии в процессе переваривания и использования [1, 5, 6].

Изучение содержания обменной и чистой энергии продукции в основных кормах (травяных и концентрированных) для сельскохозяйственных животных позволяет внести соответствующие изменения в таблицы питательности кормов, что даст возможность составлять более эффективные рационы кормления крупного рогатого скота.

До недавнего времени в животноводстве и кормопроизводстве мерой такой оценки являлся кормовой эквивалент в виде овсяной кормовой единицы. Использование этого эквивалента в настоящее время не позволяет точно сбалансировать рационы крупного рогатого скота. В нашей стране принято вести оценку энергетической питательности кормов и в показателях обменной энергии [7].

В странах развитого молочного и мясного скотоводства оценка энергетической питательности для крупного рогатого скота ведётся в показателях чистой энергии продукции (прироста или лактации), наиболее точно отражающей физиологические возможности организма жвачных животных с многокамерным типом пищеварения использовать валовую энергию корма на производство определённого количества продукции. По этой системе оценки качества кормов не только проще определять энергетическую питательность кормов и рационов по обменной энергии, чем по овсяным кормовым единицам, но и увязывать оценку качества и меняющуюся норму затрат на синтез продукции.

В связи с этим, возникает необходимость усовершенствования системы оценки питательности кормовых средств для обеспечения более полноценного кормления скота, соответствующего уровню его продуктивности.

Целью работы было определение содержания обменной и чистой энергии продукции в травяных кормах, заготавливаемых по новым прогрессивным технологиям, для крупного рогатого скота.

Материал и методика исследований. В РУП «Научно-

практический центр Национальной академии наук Беларуси по животноводству» проведены исследования по определению переваримости питательных веществ и содержания обменной энергии и чистой энергии продукции в травяных кормах.

Были отобраны образцы силосов и сенажей, приготовленных из злаковых и бобовых культур в различные фазы вегетации.

Физиологические опыты проводились на фистульных бычках чёрно-пёстрой породы, выращиваемых на мясо, живой массой 300-350 кг.

Результаты эксперимента и их обсуждение. Определение содержания обменной энергии в кормах, а также эффективности её использования в организме животных производилось на основании химического состава кормов и коэффициентов переваримости питательных веществ. Состав изучаемых кормов представлен в таблице 1.

Таблица 1 – Химический состав кормов, г/кг

	Показатели							
Vanue	Cyxoe	Органи-	БЭВ	Про-	Жир	Клет		
Корма	веще-	ческое		теин		чат-		
	ство	вещество				ка		
1	2	3	4	5	6	7		
Силос кукурузный								
(молочновосковая								
спелость)	253	244,5	136,9	26,7	7,5	73,4		
Силос тимофеечный	251	231,7	96,6	28	8,4	98,7		
Силос разнотрав-								
ный	255	239,6	111,6	31,7	9,3	87		
Силос клеверо-ти-								
мофеечный	268	246,8	121,3	33,0	9,2	83,3		
Силос вико-овся-								
ный	251	230,2	109,3	31,2	11,9	77,8		
Силос люпино-ов-								
сяный	224	205,7	86,7	28,0	12,1	78,9		
Силос горохово-ов-				• • •		0.1.1		
сяный	256	236,4	103,2	34,0	13,1	86,1		
Сенаж тимофееч-		4000	• • • •		400			
ный	438,2	400,8	208	47,1	10,0	135,7		
Сенаж из ежи сбор-	400.0	275.0	221.0	42.0	7.20	100 6		
ной	409,0	375,0	221,0	43,9	7,30	102,6		
Сенаж из смеси зла-	410.0	202.7	2112	40.5	11.0	121.0		
ковых многолетних	412,0	392,7	211,2	49,5	11,0	121,0		
Сенаж ржаной	440,2	416,6	227,3	42,4	12,1	134,8		

Продолжение таблицы 1

1	2	3	4	5	6	7
Сенаж из райграса	436,2	396,4	206,9	47,2	15,8	126,5
Сенаж из костреца						
безостого	435,0	406,6	215,7	40,5	6,20	144,2
Сенаж разнотрав-						
ный	421,0	396,7	209,6	46,8	11,3	129,0
Сенаж люцерновый	422,1	396,8	208,1	61,6	10,3	116,8
Сенаж вико-овсяный	401,0	379,9	186,5	61,0	12,8	119,6
Сенаж клеверный	442,0	409,9	229,3	67,3	9,2	104,1
Сенаж клеверо-ти-						
мофеечный	441,5	415,1	227,3	52,9	11,2	123,7
Сенаж из смеси зла-						
ково-бобовых трав	426,8	389,2	203,5	48,7	16,9	120,1

В целом, оценивая состав изученных злаковых и злаково-бобовых силосов, можно отметить, что значительных различий между ними не наблюдалось. Только по содержанию протеина силоса из смеси злаково-бобовых культур превосходили силоса из чистых злаков.

В сенажах из злаковых культур максимальное содержание сухого вещества составило 440 г (сенаж ржаной), минимальное – 409 г (сенаж из ежи сборной). Наибольшее содержание протеина наблюдалось в сенаже из смеси злаковых многолетних – 49,5 г, жира и БЭВ в сенаже из ржи – 12,1 и 227,3 г, клетчатки – 144,2 г в сенаже из костреца безостого.

Содержание сухого вещества в сенажах из бобовых и смеси злаково-бобовых культур было на уровне 401 (сенаж вико-овсяный) — 442 г (сенаж клеверный). Также в клеверном сенаже содержалось наибольшее количество протеина и безазотистых экстрактивных веществ — 67,3 и 229,3 г. Самое высокое содержание жира и клетчатки было в сенаже из смеси злаково-бобовых трав.

Сравнивая составы изучаемых сенажей, как и в случае с силосами, можно отметить более высокое содержание протеина в бобовых и злаково-бобовых сенажах. По остальным показателям значительных различий не отмечено.

Для более объективной оценки кормов необходимо также изучить содержание питательных веществ в расчете на сухое вещество (таблица 2).

В сухом веществе силосов содержалось от 38,5 (силос тимофеечный) до 54,1% безазотистых экстрактивных веществ (Силос кукурузный (молочновосковая спелость)), 8,7-13,3 % протеина, 3,0-5,4 % жира

и 29,0-39,3 % клетчатки. Наибольшее количество протеина в сухом веществе отмечено в горохово-овсяном силосе, жира – в люпино-овсяном, клетчатки – в тимофеечном.

Таблица 2 – Содержание питательных веществ в сухом веществе кормов %

	Показатели					
Корма	БЭВ	Про-	Жир	Клет		
		теин		чатка		
Силос кукурузный (молочновосковая						
спелость)	54,1	10,6	3,0	29,0		
Силос тимофеечный	38,5	11,2	3,3	39,3		
Силос разнотравный	43,8	12,4	3,6	34,1		
Силос клеверо-тимофеечный	45,3	12,3	3,4	31,1		
Силос вико-овсяный	43,5	12,4	4,7	31,0		
Силос люпино-овсяный	38,7	12,5	5,4	35,2		
Силос горохово-овсяный	40,3	13,3	5,1	33,6		
Сенаж тимофеечный	47,6	10,7	2,3	30,9		
Сенаж из ежи сборной	54,0	10,7	1,8	25,1		
Сенаж из смеси злаковых многолет-						
них	51,3	12,0	2,7	29,4		
Сенаж ржаной	51,6	9,6	2,7	30,6		
Сенаж из костреца безостого	49,6	9,3	1,4	33,1		
Сенаж из райграса	47,4	10,8	3,6	29,0		
Сенаж разнотравный	49,8	11,1	2,7	30,6		
Сенаж люцерновый	49,3	14,6	2,4	27,7		
Сенаж вико-овсяный	46,5	15,2	3,2	29,8		
Сенаж клеверный	51,9	15,2	2,1	23,6		
Сенаж клеверо-тимофеечный	51,5	12,0	2,5	28,0		
Сенаж из смеси злаково-бобовых						
трав	47,7	11,4	4,0	28,1		

Сравнивая состав сухого вещества силосов из злаковых культур и злаково-бобовых, можно отметить в составе последних более высокое содержание протеина и жира.

В составе сухого вещества наблюдается такая же тенденция, как и в силосах. Содержание жира и протеина в составе сенажей из бобовых и злаково-бобовых культур выше, чем в злаковых, в то же время, большее содержание клетчатки отмечено в сенажах из злаковых культур.

Наибольшее количество протеина в сухом веществе отмечено в клеверном и вико-овсяном сенажах – 15,2 %, жира – в смеси злаковых

и бобовых трав -4 %, клетчатки - в сенаже из костреца безостого - 33,1 %.

В физиологических опытах на основании данных по потреблению и выделению питательных веществ животными определялась переваримость питательных веществ кормов бычками (таблица 3).

Таблица 3 – Переваримость питательных веществ кормов, %

	Переваримость питательных веществ							
Корма	Cyxoe	Орга-	Про-	Жир	Клет	БЭВ		
	веще-	ниче-	теин	•	чат-			
	ство	ское			ка			
		веще-						
		ство						
1	2	3	4	5	6	7		
Силос кукурузный								
(молочновосковая								
спелость)	63,7	67,7	61,5	63,9	59,1	73,8		
Силос тимофеечный	61,5	63,5	59,4	62,5	63,5	64,6		
Силос разнотрав-								
ный	60,6	62,8	60,1	62,3	58,6	66,9		
Силос клеверо-ти-								
мофеечный	58,2	61	59,6	59	57,4	64,1		
Силос вико-								
овсяный	59,3	60,7	58,8	59,3	58,7	62,8		
Силос люпино-овся-								
ный	60,4	63,1	60	62,9	59	67,8		
Силос горохово-ов-								
сяный	61,9	64,7	63,2	62,8	59,7	69,7		
Сенаж тимофееч-								
ный	61,2	62,7	60,2	55,7	58,6	66,4		
Сенаж из ежи сбор-								
ной	65	67,5	61,3	58,7	59,7	72,7		
Сенаж из смеси зла-								
ковых многолетних	62,6	65,3	63,8	58,5	57,2	70,7		
Сенаж ржаной	66,2	68,6	65,9	66,5	60	74,2		
Сенаж разнотрав-								
ный	60	62,9	57,7	62,5	59,6	66,1		
Сенаж люцерновый	61,1	64,9	61,6	56,2	59,1	69,6		
Сенаж из костреца								
безостого	63,1	67,3	59,9	62,7	60,4	73,3		
Сенаж из райграса	60,0	61,5	58,4	60,7	55,9	65,6		

Продолжение таблицы 3

1	2	3	4	5	6	7
Сенаж вико-						
овсяный	63,1	67,3	65,3	63,7	64,2	70,2
Сенаж клеверный	60,4	64,3	59	56,2	61,2	67,6
Сенаж клеверо-ти-						
мофеечный	58,5	62,6	57,9	58,3	58,8	66
Сенаж из смеси зла-						
ково-бобовых трав	60,4	63,2	60,1	62,2	57,7	67,3

В результате проведённых исследований установлено, что переваримость сухого вещества силосов колебалась от 58,2 % (силос клеверотимофеечный) до 63,7 % (силос кукурузный (молочновосковой спелости)), протеина – от 58,8 (силос вико-овсяный) до 63,2 (силос из горохово-овсяной смеси), жира – от 59 (силос клеверо-тимофеечный) до 63,9 (силос из кукурузы молочновосковой спелости), клетчатки от 57,4 (силос клеверо-тимофеечный) до 63,5 (силос тимофеечный), БЭВ – от 62,8 (силос вико-овсяный) до 73,8 % (силос из кукурузы молочновосковой спелости).

Переваримость сухого вещества сенажей находилась в пределах от 58,5 % (сенаж из смеси клевера и тимофеевки) до 66,2 % (сенаж ржаной), протеина – от 57,9 (сенаж клеверо-тимофеечный) до 65,3 (сенаж вико-овсяный), жира – от 55,7 (сенаж тимофеечный) до 66,2 (сенаж ржаной), клетчатки – от 55,9 (сенаж из райграса) до 64,2 (сенаж вико-овсяный), БЭВ – от 65,6 % (сенаж из райграса) до 74,2 % (сенаж ржаной).

На основании данных физиологических опытов и химического состава кормов определено содержание в них обменной энергии, энергии поддержания и чистой энергии продукции (таблица 4).

Установлено, что в килограмме натурального корма содержалось от 2,0 (силос люпино-овсяный) до 2,6 МДж обменной энергии (силос из кукурузы молочновосковой спелости). Концентрация обменной энергии в 1 кг сухого вещества изучаемых силосов в среднем составляет 9,1 МДж. В кукурузном силосе, заготовленном в фазу молочновосковой спелости, этот показатель самый высокий и составляет 9,96 МДж. Самая низкая концентрация обменной энергии отмечена в сухом веществе клеверо-тимофеечного силоса — 8,62 МДж. В силосе разнотравном этот показатель равен 9,06, в тимофеечном — 8,95, в люпиноовсяном — 9,11, в викоовсяном — 8,69 МДж/кг сухого вещества.

Таблица 4 — Содержание в кормах обменной энергии, чистой энергии на поддержание жизни и чистой энергии продукции

	Обменная	Обмен-	Чистая	я энер-	Чистая энер-	
	энергия,	ная		а под-	гия на при-	
	МДж/кг	энер-	держание		рост	
Корма	натураль-	гия,	жизни		Pour	
	ного кор-	МДж/к	МДж/	% от	МДж/	% от
	ма	г СВ	кг СВ	09	кг СВ	0Э
Curas	Witt	ТСВ	KI CD	00	KI CD	03
Силос кукурузный						
(молочновосковая	2.52	0.06	5.99	c0 1	250	25.70
спелость)	2,52	9,96	- ,	60,1	3,56	35,70
Силос тимофеечный	2,23	8,88	5,23	58,90	2,51	28,3
Силос разнотравный	2,31	9,06	5,36	59,20	2,72	30,0
Силос клеверо-тимо-						
феечный	2,31	8,62	5,11	59,30	2,35	27,3
Силос вико-овсяный	2,18	8,69	5,11	58,8	2,35	27,0
Силос люпино-овся-						
ный	2,04	9,11	5,36	58,8	2,72	29,9
Силос горохово-овся-						
ный	2,40	9,38	5,61	59,8	3,06	32,6
Сенаж тимофеечный	3,92	8,95	5,36	59,9	2,72	30,4
Сенаж из ежи сборной	3,82	9,34	5,61	60,1	3,06	32,8
Сенаж из смеси злако-						
вых многолетних	3,90	9,47	5,61	59,20	3,06	32,3
Сенаж ржаной	4,34	9,86	5,86	59,40	3,39	34,4
Сенаж разнотравный	3,79	9,00	5,36	59,60	2,72	30,20
Сенаж вико-овсяный	3,93	9,80	5,86	59,80	3,39	34,6
Сенаж клеверный	4,02	9,10	5,36	58,90	2,72	29,9
Сенаж клеверо-тимо-	ŕ	,	,	,	,	ŕ
феечный	3,95	8,62	5,36	59,9	2,72	30,4
Сенаж из смеси злако-	ĺ	<i></i>		ĺ		ĺ
во-бобовых культур	3,81	8,93	5,23	58,60	2,51	28,1
Сенаж люцерновый	3,93	9,31	5,49	59,00	2,89	31,0
Сенаж из костреца		- ,-	- , -		,	- 7-
безостого	4.07	9.36	5,61	59.90	3,06	32,7
Сенаж из райграса	3,75	8,70	5,11	58,70	2,35	27,0

Из этой энергии на поддержание жизненных функций расходуется от 58 до 60 %, или 5,1-5,5 МДж. Для синтеза продукции используется 27,3-36 % от всей обменной энергии. Следует отметить закономерность: чем выше концентрация обменной энергии в сухом веществе, тем эффективнее она используется в организме. По этому показателю наиболее эффективным оказался силос из кукурузы молочновосковой спелости. Чистая энергия продукции составляет 3,56 МДж, или 35,7 %. В горохово-овсяном силосе на синтез продукции затрачивается 3,06

МДж, или 32,6 %. В клеверо-тимофеечном и викоовсяном силосах энергия продукции самая низкая – 2,35 МДж, или 27,0-27,3 %.

На основании результатов опытов с сенажами установлено, что в килограмме натурального корма содержалось в среднем от 3,94 МДж обменной энергии. Самый высокий показатель отмечен в сенаже из ржи – 4,34 МДж, самый низкий – в сенаже из райграса – 3,75 МДж. При пересчёте на сухое вещество самая высокая и самая низкая концентрация обменной энергии также отмечена в этих сенажах – 9,86 и 8,7 МДж. В среднем концентрация обменной энергии в 1 кг сухого вещества изучаемых сенажей составила 9,26 МДж. Из этой энергии на поддержание жизненных функций расходуется от 59 до 60 %, или 5,11-5,86 МДж. Для синтеза продукции используется 27-35 % от всей обменной энергии. По этому показателю наиболее эффективными оказались сенажи из ржи и вико-овсяной смеси – 34,6 и 34,4 % соответственно. Чистая энергия продукции составила 3,39 МДж. В сенаже из райграса энергия продукции самая низкая – 2,35 МДж, или 27 % от всей обменной энергии.

Выводы. Содержание чистой энергии продукции в сенажах и силосах зависит от концентрации обменной энергии в сухом веществе корма. Чем больше обменной энергии содержится в корме, тем эффективнее она расходуется в организме животных. В среднем по силосам содержание обменной энергии в 1 кг сухого вещества составляет 9,1 МДж, из них на синтез продукции расходуется 2,35-35,6 МДж, или 27-36 %. Концентрация обменной энергии в среднем по сенажам составляет 9,26 МДж в 1 кг сухого вещества. На синтез продукции расходуется в среднем 2,91 МДж, или 31,3 %.

Литература

- 1. Оценка энергетической и протеиновой питательности кормов и рационов для крупного рогатого скота : методические рек. / П. С. Авраменко [и др.]. Мн., 1989. 45 с
- 2. Дмитроченко, А. П. Теоретические основы энергетического питания животных / А. П. Дмитроченко // Вестник сельскохозяйственной науки. 1978. № 9. С. 57-67.
- 3. Использование питательных веществ жвачными животными / пер. с нем. Н. С. Гельман ; под ред. А. М. Холманова. М. : Колос, 1978. 424 с.
- 4. Яцко, \dot{H} . А. Эффективность использования кормов в скотоводстве / \dot{H} . А. Яцко // Животноводство Беларуси. 1998. № 1. \dot{C} . 14-16.
- 5. Нормы и рационы кормления с.-х. животных : справ. пособие / под ред. А. П. Калашникова [и др.]. M., 2003. 456 с.
- 6. Калашников, А. П. Результаты исследований и задачи науки по совершенствованию теории и практики кормления высокопродуктивных животных / А. П. Калашников, В. В. Щеглов // Новое в кормление высокопродуктивных животных : сб. науч. тр. / под ред. А. П. Калашникова. М. : Агропромиздат, 1989. С. 3-11.
- 7. Кремптон, Э. У. Практика кормления сельскохозяйственных животных / Э. У. Кремптон, Л. Э. Харрис; под ред. А. С. Солуна, А. К. Швабе. М.: Колос, 1972. 328 с.
- 8. Григорьев, Н. Г. К вопросу о современных проблемах в оценке питательности кормов и нормировании кормления животных / Н. Г. Григорьев // Сельскохозяйственная

УДК 636.2.084.522

Т.Г. КРЫШТОН, В.К. ГУРИН, Н.А. ЯЦКО

ИНТЕНСИВНОСТЬ РОСТА И ПОКАЗАТЕЛИ СПЕРМОПРОДУКЦИИ РЕМОНТНЫХ БЫЧКОВ В ЗАВИСИМОСТИ ОТ КАЧЕСТВА ПРОТЕИНА В РАЦИОНЕ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. В системе племенного улучшения поголовья крупного рогатого скота большое значение имеет выращивание высокоценных быков-производителей.

Для нормального роста и развития племенного молодняка необходима организация полноценного кормления. Обеспечение их рационов энергией и протеином с учётом его качества должно постоянно контролироваться. Недостаточное обеспечение ремонтных бычков энергией и протеином, а также минеральными веществами приводит к запаздыванию выработки семенниками тестостерона и недоразвитию пузырьковидной железы, сужению просвета извитых канальцев семенников [1-10].

Что касается кормления племенного молодняка, то в последнее время вопросы по разработке и уточнению их потребности в протеине и энергии с учётом полученных достижений в области биохимии и физиологии изучены недостаточно [1, 2, 8].

В последнее время в Республике Беларусь появились новые виды и сорта люпина и гороха и других зернофуражных культур с пониженным содержанием антипитательных веществ, которые могут быть использованы в рационах ремонтных бычков с целью повышения их воспроизводительной способности. Однако таких исследований в республике не проводилось. Поэтому исследования в этом направлении имеют научную и практическую значимость для повышения эффективности выращивания ремонтных бычков.

Целью данной работы явилось определение влияния качества протеина на интенсивность роста и показатели спермопродукции ремонтных бычков.

Материал и методика исследований. Для достижения поставлен-