В.Ф. РАДЧИКОВ 1 , С.И. ПЕНТИЛЮК 2

НОВАЯ ТЕХНОЛОГИЯ ПРИГОТОВЛЕНИЯ ВЛАЖНЫХ КОРМОВЫХ СМЕСЕЙ

 1 РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству» 2 Херсонский государственный аграрный университет

Введение. Одним из способов существенного увеличения прибыльности животноводства является внедрение прогрессивных наукоемких технологий приготовления кормов с минимальной себестоимостью. Учитывая существующий дефицит белка в рационах животных, новая технология переработки зерна бобовых и злаковых культур позволит решить проблему сбалансированного кормления [1].

Оборудование ТЕКМАШ предназначено для нагревания жидких сред, которое основано на явлениях гидродинамики при минимальных расходах энергоносителей. У него широкий спектр применения: от нагревания жидкостей, включая пастеризацию молока, до приготовления влажных кормовых средств. Уникальность этого оборудования заключается в том, что установка ТЕК-СМ объединяет в одном производственном цикле (длительность 40-50 минут при достижении температуры до 105-110°С) три отдельные технологические операции: измельчение, термическую обработку и смешивание.

Учитывая разнообразие технологических способов кормления животных и большой ассортимент кормовых средств, которые изготавливаются по технологии ТЕКМАШ, есть возможность для каждого конкретного хозяйства, с учетом используемой кормовой базы, подобрать оптимальный набор кормов и условия их включения в состав рационов животных.

Предложены следующие возможные направления использования технологии ТЕКМАШ в условиях существующих производств.

<u>Приготовление влажных заменителей молочных продуктов</u>. Это направление перспективно, в первую очередь, для новорожденных телят, поросят и ягнят. Главное преимущество технологии зпключается в том, что влажные заменители можно готовить непосредственно в условиях ферм, минуя заводские сухие формы [2].

Общеизвестно, что дороговизна существующих сухих заменителей молочных продуктов обусловлена сложностью технологии их производства и необходимостью использовать специализированное оборудование. Если схематически представить технологию их использова-

ния от изготовления к конечному выпаиванию животным, то это достаточно трудоемкая и энергоемкая технологическая цепочка.

Поэтому расширяются исследования по вовлечению для кормовых целей разнообразного растительного сырья (люпина, гороха, рапса, сои и др.), в том числе растительных и животных жиров и белковых компонентов, минеральных веществ и других [3, 4]. Разрабатываются технологии и оборудование для производства новых ЗЦМ из более дешевого местного сырья растительного и животного происхождения и изучается эффективность их использования.

По технологии ТЕКМАШ эта длинная технологическая цепочка занимает максимум 1,5 часа (50-60 минут для переработки компонентов + 20-30 минут для разбавления и приготовления смеси необходимой влажности). И заменитель молочных продуктов необходимого состава готов к использованию.

Другая проблема заключается в том, что при высокой стоимости этих сухих заменителей животноводы вынуждены максимально сокращать сроки их выпаивания. Предлагаемая технология благодаря простоте приготовления кормовых смесей и низким энергозатратам позволяет продлить сроки выпаивания животных и вернуть их к нормальным, физиологически необходимым условиям кормления.

<u>Приготовление влажных зерновых смесей</u>. Современная технология приготовления кормов рекомендует термически обрабатывать все зерновые бобовые культуры и обязательно отдельные другие, которые характеризуются повышенным содержанием антипитательных факторов. Поэтому технологическое оборудование ТЕКМАШ сначала предназначалось для переработки именно этих культур и, в первую очередь, сои [3].

В связи с этим целью наших исследований была оценка питательной ценности кормовых продуктов (растительных паст и растительного молочка), получаемых после переработки зерна по технологии «ТЕКМАШ» на гидродинамических установках ТЕК-СМ.

Материал и методика исследований. Для решения поставленной цели в условиях РУСП «Заречье» Смолевичского района проведены исследования растительных паст на основе зерна сои, люпина и смеси зерна рапса, ячменя шелушенного и люпина, полученного на установке ТЕК-СМ производства Гомельского завода «Коммунальник». С помощью установки ТЕК-СМ были приготовлены 3 вида паст. Для приготовления одной порции пасты использовалось 40 кг зерна и 105 кг воды. В течение часа смесь подвергалась обработке в установке. При достижении температуры 105°С установка автоматически останавливалась и производилась выдержка смеси при данной температуре, по окончании времени выдержки установка кратковременно запускалась. После окончания технологического цикла производилась выгрузка по-

лученной пасты. В дальнейшем по технологии предусмотрено разбавление пасты водой с получением растительного молочка, содержащего 10-12 % сухого вещества.

Для проведения анализов отбиралось зерно и приготовленные из него паста и молочко.

Состав, питательную ценность и антипитательные вещества зерна и пасты определяли в РУП «Науно-практический центр Национальной академии наук Беларуси по животноводству» и ГУ «Центральная научно-исследовательская лаборатория хлебопродуктов». В образцах зерна и пасты определяли сухое и органическое вещество, жир, протеин, клетчатку, БЭВ, золу, кальций, фосфор, калий, натрий, магний, серу, железо, медь, марганец, цинк, кобальт, витамины В₁ и В₂, каротин, некоторые аминокислоты (лизин, гистидин, аргинин, треонин, аланин, валин, метионин, изолейцин, лейцин, фенилаланин).

Результаты эксперимента и их обсуждение. В результате влаготепловой обработки зерна с помощью установки ТЕК-СМ получается паста, содержащая до 28,6 % сухого вещества. После разбавления ее водой до необходимой консистенции образуется мелкодисперстная, однородная смесь (растительное молочко), не осаждающаяся в течение 10 часов. Подробные данные о составе зерна и полученной пасты приведены в таблице 1.

Таблица 1 — Содержание питательных веществ в зерне и пасте при натуральной влажности, г/кг

71	Зерно								
Показатели	люі	пин	co	RC	Зерносмесь				
	зерно	паста	зерно	паста	зерно	Паста			
Сухое вещество	849	258	855	286	846	284			
Азот	43,2	13,0	61,9	20,4	36,7	12,0			
Протеин	270,0	81,0	386,5	127,6	229,3	75,3			
Caxap	52,0	20,0	45,7	20,4	41,5	21,8			
Клетчатка	118,9	23,0	115,9	18,0	102,8	14,7			
Зола	33,1	10,4	68,0	22,3	26,2	8,9			
Жир	36,9	11,1	170,1	57,2	111,2	37,5			
БЭВ	390,0	132,4	114,5	60,9	376,5	147,6			
Органическое веще-									
СТВО	815,9	247,6	787,0	263,5	819,8	275,1			

В связи с тем, что содержание сухого вещества в получаемой пасте значительно отличается от количества такового в зерне, судить об изменениях, происходящих в составе зерна в процессе обработки при натуральной влажности, сложно. Поэтому были изучены изменения состава в абсолютно сухом веществе исходного сырья и полученного

продукта (табл. 2).

Таблица 2 - Содержание питательных веществ в абсолютно сухом ве-

ществе зерна и пасты, г/кг

	Вид зерна										
Показате-	люпин			соя			зерносмесь				
ли	зер-	пас-	%	зер-	пас-	%	зер-	пас-	%		
	но	та		но	та		но	та			
Органиче-											
ское веще-											
ство	961	959,6	99,9	920,5	921,2	100,1	969	968,5	99,9		
Азот	50,9	50,2	98,6	72,4	71,4	98,6	43,4	42,4	97,7		
Протеин	318	314	98,7	452	446	98,7	271	265	97,8		
Caxap	61,3	77,4	126	53,5	71,4	133	49,1	76,7	156		
Клетчатка	140,1	89,3	63,7	135,6	63,1	46,5	121,5	51,9	42,7		
Жир	43,5	43,2	99,3	199,0	200,0	99,5	131,5	132,0	100,7		
БЭВ	459,4	513,1	111,7	133,9	212,8	159,4	445,0	519,6	116,8		
Зола	39	40,4	103,6	79,5	78,1	98,2	31,0	31,5	101,6		

Установлено, что после обработки зерна на установке ТЕК-СМ произошли изменения в составе органического вещества всех образцов. Минеральный состав корма остался на прежнем уровне. Количество золы в сухом веществе пасты отличалось от ее количества в зерне на 1.6-3.6 %.

В то же время, в составе органического вещества значительно изменятся соотношение сахаров и клетчатки. Содержание сахара возросло на 26-56 %. Наибольшее повышение уровня сахара отмечено в пасте, приготовленной из зерносмеси. В то же время, количество клетчатки в конечном продукте уменьшилось на 10,7-57,3 % по сравнению с исходным сырьем.

Вероятно, в результате воздействия высокой температуры и влаги на белки зерна, произошел распад части белка на более простые составляющие, вследствие чего содержание аминокислот в сухом веществе пасты увеличилось (таблица 3).

Таблица 3 - Содержание аминокислот в абсолютно сухом веществе

различных видов зерна г/кг

pastii iiibii biigob sepila i ia											
	Вид зерна										
Показатели		люпин			соя		зерносмесь				
	зерно	паста	%	зерно	паста	%	зерно	паста	%		
1	2	3	4	5	6	7	8	9	10		
Лизин	17,1	22,1	129,2	26,5	32,3	121,9	14,8	22,2	150,0		
Гистидин	11,7	14,3	122,2	8,6	11,8	137,2	9,3	13,5	145,2		
Аргинин	35,6	45,3	127,2	29	39,8	137,2	25,2	33,3	132,1		

Продолжение табл. 3

1	2	3	4	5	6	7	8	9	10
Треонин	14,8	26,9	127,7	14,2	19,8	139,4	10	14,6	146,0
Аланин	-	-	-	16	22,3	139,4	8,4	11,4	135,7
Валин	13,7	16,7	121,9	20,6	27,1	131,6	10,6	15,3	144,3
Метионин	4,9	7,7	157,1	8	11,5	143,8	9,6	14,7	153,1
Изолейцин	14	18,3	130,7	20,7	27,1	130,9	9,9	13,6	137,4
Лейцин	24,7	34,6	140,1	29,2	36,5	125,0	17,4	22,1	127,0
Фенилала-									
нин	15,9	22,8	143,4	19,2	25	130,2	12,2	17,3	141,8

Обработка зерна на установке ТЕК-СМ не оказала влияния на содержание минеральных веществ в сухом веществе зерна (табл. 4).

Таблица 4 – Содержание минеральных веществ в 1 кг абсолютно сухо-

го веществе необработанного и обработанного зерна

	Вид зерна										
Показатели	люпин			соя			Зерносмесь				
Показатели	зерно	паста	%	зерно	паста	%	зер-	паста	%		
							но				
Кальций, г	4	4	100	3,4	3,6	105,8	2,9	3,0	103,4		
Фосфор, г	5,4	5,5	101,9	5,0	5,6	112	4,8	5,0	104,2		
Магний, г	2,1	2,2	103,8	3,7	3,6	96,2	1,3	1,3	100,0		
Калий, г	13,9	14,0	100,7	27,5	27,6	100,4	7,8	7,9	101,3		
Сера, г	4,6	4,5	98,0	2,7	2,7	100,0	2,7	2,8	102,1		
Железо, мг	28,3	28,2	99,8	190,6	191,1	100,2	53,4	54,1	101,3		
Медь, мг	4,7	4,7	100,0	18,9	18,8	99,2	3,4	3,4	100,0		
Цинк, мг	42,5	42,6	100,2	32,9	32,9	100,0	47,5	48,1	101,2		
Марганец, мг	61,7	61,6	99,8	28,7	28,7	100,0	39,6	39,6	100,0		
Кобальт, мг	0,1	0,1	100,0	0,1	0,1	100,0	0,1	0,1	100,0		

Кроме минеральных веществ в зерне и пасте было определено и содержание отдельных витаминов.

В результате того, что большая часть витаминов группы В устойчивы к нагреванию и сохраняются при температуре до 120°C, а гидродинамическая обработка зерна на установке ТЕК-СМ ведется при максимальной температуре 105°C, содержание витаминов изменилось незначительно (табл. 5).

Об изменении активности уреазы под влиянием гидротермического воздействия судили по изменению кислотности (рН) в зерне сои до и после обработки. Так, до обработки кислотность составила 0,7, после – 0,05, что говорит о практически полной инактивации уреазы.

Таблица 5 – Содержание витаминов в необработанном и обработанном

зерне, г/кг

	Вид зерна										
Показатели	люі	ТИН	co	RC	зерносмесь						
	зерно	паста	зерно	паста	зерно	паста					
Витамин В1	10,83	10,77	11,21	11,04	5,93	5,68					
Витамин В2	3,19	3,05	2,23	2,11	3,17	3,12					

Заключение. 1. Способ обработки зерна бобовых и злаковых культур по технологии «ТЕКМАШ» на установке гидродинамической ТЕК-СМ позволяет получать мелкодисперсные кормовые продукты (пасты, молочко) с содержанием сухих веществ до 29 % с улучшенными питательными свойствами по сравнению с исходным сырьем.

- 2. Переработка зерна на установке гидродинамической ТЕК-СМ позволяет увеличить содержание сахаров на 26-56 %, свободных аминокислот на 22-57 %, при этом количество клетчатки уменьшается на 11-57 %. Активность антипитательных веществ, содержащихся в сое (уреазы) снижается до безопасного уровня.
- 3. Получаемое по технологии «ТЕКМАШ» растительное молочко может быть использовано как основа для производства заменителей цельного молока из местных видов растительного сырья и как белковая добавка в составе рационов сельскохозяйственных животных.

Литература

- 1. А. с. № 20301. Умови приготування та використання вологих кормових сумішей / Пентилюк С.І. [та інш.]. надрук. 24.04.2007.
- 2. Патент № 8779. Спосіб застосування вологих кормових сумішей : деклараційний патент на корисну модель. надрук. 15.08.2005. Бюл. № 8.
- 3. Алимов, Т. К. Использование заменителей молока при выращивании телят ягнят / Т. К. Алимов. М. : ВНИИТЭНСХ, 1981. 59 с.
- 4. Ижболдина, С. Н. Использование кормов молодняком крупного рогатого скота / С. Н. Ижболдина // Зоотехния. 1998. № 4. С. 15.

(поступила 20.02.2008 г.)