A.A. HEBAP

ПЕРЕВАРИМОСТЬ И ИСПОЛЬЗОВАНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ КОРМА ПЛЕМЕННЫМИ БЫЧКАМИ ПРИ ИСПОЛЬЗОВАНИИ КОМПЛЕКСНОЙ ВИТАМИННО-МИНЕРАЛЬНОЙ ДОБАВКИ В ЗИМНИЙ ПЕРИОД

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. За последние годы во многих странах мира с интенсивно развитым животноводством проводится большая работа по пересмотру и уточнению норм минерального питания животных, изысканию новых эффективных источников минеральных добавок, совершенствованию технологии их скармливания. Наряду с этим ведутся глубокие биохимические и физиологические исследования, имеющие целью вскрыть общие закономерности обмена макро- и микроэлементов в зависимости от возраста, физиологического состояния и направления продуктивности животных. Конечной практической целью этих исследований является физиологическое обоснование потребностей сельскохозяйственных животных в минеральных элементах, разработка простых и доступных критериев полноценности минерального питания и способов ранней диагностики субклинических форм минеральной недостаточности [1].

В кормах минеральные элементы содержатся в виде различных по сложности минеральных и органических соединений, которые часто бывают труднодоступными для усвоения организмом животных. Чтобы удовлетворить потребность животных в минеральных веществах, необходимо знать не только их содержание в кормах, но и степень их усвоения организмом, значительно изменяющуюся в зависимости от вида, физиологического состояния, возраста и уровня продуктивности животных. Например, установлено, что одни минеральные вещества лучше используются жвачными, другие – моногастричными животными; с возрастом усвоение минеральных веществ растущими животными снижается; беременные животные усваивают их лучше и т. д. [2]

Наиболее важными микроэлементами в питании телят является медь, железа, марганец, цинк, кобальт, йод и селен. В некоторых зонах нашей страны очень часто отмечается недостаток этих незаменимых элементов в рационах, в почве, в воде и кормах, в результате чего нарушается обмен веществ у животных, отмечаются заболевания молодняка и снижение продуктивности. Таким образом, оптимизация условий минерального питания телят до 6-месячного возраста является

важным резервом повышения их продуктивности, устойчивости к заболеваниям и снижения себестоимости продукции [3].

Обеспеченность животными микроэлементами зависит от содержания их в кормах, что, в свою очередь, определяется составом почв. Различные биогеохимические зоны и провинции характеризуются недостатком или избытком определенных микроэлементов в почках и растениях. С учетом особенности этих зон, содержания в почвах и растения микроэлементов должен решаться вопрос о нормах их добавок в рационы. Микроэлементы, не правильно дозированные, примененные в недостаточном или избыточном количестве, могут оказаться бесполезными или даже вредными. Необходимо находить наиболее эффективное сочетание микроэлементов в рационах. При этом следует учитывать их возможный синергизм или антагонизм, то есть взаимовлияние различных микроэлементов [4].

Известно, что чрезмерно большая дача какого-либо жизненно необходимого элемента, как и его недостаток, может вызвать расстройства обмена веществ. Симптомы недостаточности чаще всего появляются лишь в случае уменьшения нормы более чем на 25 %. Для микроэлементов разрыв между нормой и критическим содержанием микроэлементов еще более значителен [5, 6].

Таким образом, из данных литературы известно, что минеральное питание телят недостаточно оптимизировано. Исходя из этого, мы поставили перед собой задачу — разработать оптимальные нормы потребления микроэлементов телятами до 6-месячного возраста.

Целью работы стала разработка премикса для племенных бычков молочного периода, наиболее полно удовлетворяющего потребности в витаминах A, Д, Е, меди, цинке, марганце, кобальте, йоде, селене и молибдене, а также изучение переваримости и усвояемости питательных веществ корма племенными бычками при использовании комплексной витаминно-минеральной добавки в зимний период.

Материал и методика исследований. Для решения поставленной цели был проведен научно-хозяйственный опыт на бычках чернопёстрой породы до 6-месячного возраста в РСУП «Племзавод «Кореличи» Гродненской области в осенне-зимний период. В опыте участвовало три группы бычков-аналогов с учетом происхождения и живой массы. В каждой группе насчитывалось по 10 голов. Продолжительность опыта составила 150 дней. Схема опыта приведена в таблице 1.

Животные во всех группах находились в одинаковых условиях кормления и содержания. Кормление было двукратным, из групповых кормушек, выпойка молока – индивидуальная, из ведер.

Бычки I контрольной группы получали витаминно-минеральную добавку, сбалансированную по нормам ВАСХНИЛ. Бычки II и III опытных групп – витаминно-минеральные добавки, сбалансированные

Таблица 1 – Схема научно-хозяйственного опыта

Группы	Кол-во голов	Условия кормления
I контрольная	10	OP* + ВМД** №1 (по нормам ВАСХНИЛ)
II опытная	10	OP + ВМД №2 (по предлагаемым нормам)
III опытная	10	OP + ВМД №3 (по предлагаемым нормам)

^{*}ОР – основной рацион, **ВМД – витаминно-минеральная добавка

На основании анализа химического состава кормов и рационов кормления молодняка крупного рогатого скота мы разработали 3 рецепта премиксов, которые использовались для приготовления опытных партий комбикормов (табл. 2).

Таблица 2 – Рецепты витаминно-минеральных добавок для племенных бычков (15-180) на 1 тонну монокальцийфосфата

Компоненты	Возраст 15-90 дней			Возраст 90-180 дней		
Компоненты	I a	II a	III a	Ιб	IJб	Шб
Медь, г	190	250	110	1100	1400	600
Цинк, г	2400	3200	1600	2900	3600	2000
Марганец, г	2250	3000	1550	1600	2000	900
Кобальт, г	75	100	40	160	200	100
Йод, г	60	80	40	80	110	55
Селен, г	30	30	-	60	60	-
Молибден, г	150	150	-	300	300	-
А, млн. МЕ	2,5	3	2	2,3	2,7	1,8
Д тыс. МЕ	350	410	160	400	470	220
Е, мг	4400	5000	2400	1200	1500	600

В опыте изучались следующие показатели: поедаемость кормов – путем контрольных взвешиваний кормов их остатков один раз в декаду и гематологические показатели крови. Кровь бралась из яремной вены через 2,5-3 часа после утреннего кормления у 3 бычков из каждой группы в начале и конце опыта. В крови определяли: сахар – способом Хангедорна и Йенсена; гемоглобин и эритроциты – фотоколориметрически по методу Воробьева; лейкоциты – путем подсчета в камере Горяева; щелочной резерв – по Неводову; общий белок – рефрак-

тометрическим способом; общий и небелковый азот – по Къельдалю; белковый азот – по разнице общего и небелкового; мочевину – с помощью химреактивов диацетилмонооксидным методом; кальций – комплексометрическим титрованием; фосфор – по Бригсу; калий – по Крамеру и Тисдалю; магний, натрий, серу, железо, цинк, медь, марганец, кобальт, селен, молибден – атомно-абсорбционным спектрофотометром AAS-3; каротин – фотоколометрическим методом; витамин А – на спектрофотометре. Интенсивность роста и уровень среднесуточных приростов определяли путем индивидуального взвешивания животных при постановке и снятия с опыта, а также в середине опыта с интервалом раз в месяц, оплату корма продукцией – по фактическому расходу кормов на единицу продукции.

Результаты эксперимента и их обсуждение. Наблюдение за подопытными животными и учет поедаемости кормов показали, что бычки всех групп охотно съедали суточный рацион, случаев отказа от корма и заболеваний не выявлено.

Полученные данные по потреблению питательных веществ бычками в физиологическом опыте свидетельствуют о некотором повышении потребления основных питательных веществ у сверстников опытных групп (табл. 3).

Таблица 3 – Потребление питательных веществ подопытными бычками, г

Питательные	Группа		
вещества	I контроль	II опытная	III опытная
Сухое вещество	3097	3268	3201
Органическое вещество	2865	3078	3012
Протеин	586	689	624
Жир	151	173	161
Клетчатка	485	531	511
БЭВ	1311	1383	1355

Потребление сухого вещества животными II и III опытных групп увеличивалось на 5.5 и 3.4 %, органического вещества, сырого протеина, жира, клетчатки и БЭВ — соответственно на 7.4 и 5.1 %, 17.6 и 6.5%, 14.6 и 6.6 %, 9.5 и 5.4 %, 5.5 и 3.4 % в сравнении с контрольными бычками.

На основании данных количества потребленных кормов выделения кала, а также их химического состава рассчитаны коэффициенты переваримости питательных веществ рационов у подопытных телят. Коэффициенты переваримости основных питательных веществ представлены ниже (табл. 4).

Таблица 4 – Коэффициенты переваримости питательных веществ, %

Питательные	Группа		
вещества	I контроль	II опытная	III опытная
Сухое вещество	64,7	67,1	65,9
Органическое вещество	64,2	66,1	65,8
Протеин	65,4	67,5	66,2
Жир	58,3	61,2	60,3
Клетчатка	50,2	53,9	53,4
БЭВ	71,2	74,6	73,5

Коэффициенты переваримости большинства питательных веществ были выше у животных II опытной группы в среднем на 1,36-4,5 %, чем у III опытной и I контрольной групп, соответственно. Увеличение показателей переваримости питательных веществ корма служит важным критерием, выступающим в пользу целесообразности использования нашей разработки в области кормления животных.

Баланс азота, кальция и фосфора оказался положительным у животных всех групп (табл. 5).

Таблица 5 – Баланс азота, кальция и фосфора

Показатели	Группа				
Показатели	I контроль	II опытная	III опытная		
Баланс азота					
Принято с кормом, г	92,4	95,5	96,1		
Выделено с калом, г	32,2	28,2	30,5		
Выделено с мочой, г	36,4	36,1	37,6		
Переварено, г	60,2	67,3	65,6		
Отложено в теле, г	23,8	31,2	28,0		
Использовано, %:					
от принятого	25,8	32,7	29,1		
от переваренного	39,5	46,4*	42,7		
Баланс кальция					
Принято с кормом, г	31,4	32,9	32,3		
Выделено с калом, г	11,4	10,8	11,5		
Выделено с мочой, г	1,6	1,2	1,4		
Отложено, г	18,4	20,9	19,4		
Использовано, %:					
от принятого	58,6	63,5	60,1*		
Баланс фосфора					
Принято с кормом, г	22,3	22,9	22,4		
Выделено с калом, г	7,3	7,1	7,2		
Выделено с мочой, г	1,6	1,3	1,5		
Отложено, г	13,4	14,5	13,7		
Использовано, %:					
от принятого	60,1	63,3	61,2		

^{*}P<0.05

Большее количество азота отложено в теле бычков II группы, получавших ВМД № 2, по сравнению с животными других групп. Они лучше потребляли азот от принятого на 6,9 % и от переваренного – на 6,9 % в сравнении с контрольной группой.

Проведенные исследования показывают, что баланс кальция был положительным во всех группах. При использовании добавки № 2 увеличение отложенного кальция во II группе составило 2,5 г в сравнении с аналогами из контрольной группы. При этом отмечено повышение степени использования кальция бычками III группы на 1,5 % (Р<0,05) в сравнении с контролем.

Баланс фосфора у всех животных был положительным. Скармливание добавки в рационах бычков II опытной группы способствовало максимальному усвоению элемента из корма. Данные бычков II группы по уровню использования фосфора от принятого с кормом превысили показатели в контрольной группе на 3,2 %, а в III опытной – на 1,1 %.

Заключение. 1. В результате использования минеральных добавок потребление сухого вещества бычками увеличивалось на 5,5 и 3,4 %, органического вещества, сырого протеина, жира, клетчатки и БЭВ – соответственно на 7,4 и 5,1 %, 17,6 и 6,5 %, 14,6 и 6,6 %, 9,5 и 5,4 %, 5,5 и 3,4 %.

- 2. В ходе эксперимента установлено, что коэффициенты переваримости большинства питательных веществ, после применения ВМД, были выше у опытных животных в среднем на 1,36-4,5 %.
- 3. Включение этой добавки в рацион животных способствовало повышению усвоения организмом бычков опытной группы азота на 6,9%, кальция на 1,5 %, фосфора на 3,2 %.

Литература

- 1. Георгиевский, В. И. Минеральное питание животных / В. И. Георгиевский, Б. Н. Анненков, В. Т. Самохин. Москва : Колос, 1979. 468 с.
- 2. Новое в минеральном питании сельскохозяйственных животных / С. А. Лапшин [и др.]. Москва : Росагропромиздат, 1988. 205 с.
- 3. Кальницкий, Б. Д. Минеральные вещества в кормлении животных / Б. Д. Кальницкий. Л. : Агропромиздат, 1985. 206 с.
- 4. Клейменов, Н. И. Минеральное питание скота на комплексах и фермах / Н. И. Клейменов, М. Ш. Магомедов, А. М. Венедиктов. Москва : Россельхозиздат, 1987. 187 с.
- 5. Коваль, М. П. Эффективность скармливания микроэлементов телятам / М. П. Коваль, Н. В. Холодный // Материалы 13-ой науч. конф. / Гродненский СХИ Мн. : Ураджай, 1967. С. 109-111.
- 6. Петрухин, И. В. Корма и кормовые добавки : справочник / И. В. Петрухин. М. :Росагропромиздат, 1989. 530 с.

(поступила 27.02.2008 г.)