- С. Пелехатый [и др.] ; Науч.-исслед. ин-т сельского хозяйства Нечерноземной зоны УССР. Житомир, 1982. 153 с.
- 3. Республиканская комплексная программа по племенному делу в животноводстве на 2005-2010 годы : одобрена постановлением коллегии М-ва сельского хозяйства и продовольствия Респ. Беларусь 23.06.2044 г. Мн., 2005. 66 с.
 - 4. Рокицкий, П. Ф. Биологическая статистика / П. Ф. Рокицкий. Мн., 1967. 326 с.
 - 5. Плохинский, Н. А. Алгоритмы биометрии / Н. А. Плохинский. М., 1967. 80 с.

(поступила 3.03.2008 г.)

УДК 636.4.082.12.

О.А. ЕПИШКО 1 , Л.А. КАЛАШНИКОВА 2 , Т.И. ЕПИШКО 1 , Н.В. ЖУРИНА 1

ВЛИЯНИЕ ГЕНОВ ESR, PRLR, FSHβ И RYR1 НА РЕПРОДУКТИВНЫЕ ПРИЗНАКИ СВИНОМАТОК И ВОСПРОИЗВОДИТЕЛЬНУЮ ФУНКЦИЮ ХРЯКОВ-ПРОИЗВОДИТЕЛЕЙ ПОРОДЫ ДЮРОК

¹РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству» ²ВНИИплем (Россия)

Введение. Интенсивная селекция на повышение мясности и одновременное снижение содержания жира в туше привела к значительному увеличению количества предрасположенных и чувствительных к стрессу животных и, как следствие, снижению продуктивности и качества мяса. Кроме того, проблемой оказалось не только увеличение показателей репродуктивных признаков, но и поддержание их на достигнутом уровне.

Порода дюрок является супермясной и широко используется в системе гибридизации Республики Беларусь для получения трех- и четырехпородных гибридов. Однако матки данной породы характеризуются невысоким многоплодием, что снижает эффективность их использования [1].

Поэтому применение в селекции ДНК-маркеров, детерминирующих проявление наследственных заболеваний и репродуктивных признаков, позволит осуществлять селекцию непосредственно на уровне ДНК, то есть по генотипу, не учитывая влияние модификационной изменчивости, проводить оценку животных независимо от пола в раннем возрасте, прогнозировать и моделировать селекционный процесс. Согласно результатам исследований, полученных Н.В. Журиной [2],

применение генетических маркеров в селекции свиней белорусской мясной породы позволит увеличить многоплодие маток до 18 % за одно поколение.

В зарубежной селекционной практике используют ряд геновмаркеров, детерминирующих репродуктивные признаки: ESR – ген эстрогенового рецептора, влияющий на развитие вторичных половых признаков по женскому типу, PRLR – ген пролактинового рецептора определяющий биологическую способность свиней к многоплодию и выкармливанию поросят, FSHβ – ген β-субъединицы фолликулостимулирующего гормона, регулирующий фолликулогенез и RYR1 – ген устойчивости к стрессу, оказывающий косвенное действие на репродуктивные качества у животных-носителей мутации злокачественной гипертермии и чувствительных к стрессу.

В связи с этим, изучение генетической структуры и связи генов ESR, PRLR, FSHB и RYR1 с репродуктивными признаками свиноматок и хряков-производителей породы дюрок с целью выявления возможности использования их в качестве маркеров для повышения воспроизводительной функции животных является актуальным, что и послужило целью наших исследований.

Материалы и методика исследований. Исследования проведены в РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству». В качестве объекта исследований были использованы свиноматки и хряки-производители породы дюрок, разводимые в РСУП «СГЦ «Заднепровский» Оршанского района Витебской области.

В процессе работы методом ПЦР-ПДРФ анализа, исследован полиморфизм генов ESR, PRLR, FSHβ и RYR1 у 70 свиноматок и 33 хряков-призводителей породы дюрок.

ДНК экстрагировали из проб ткани животного перхлоратным методом. Оценку концентрации, степени очистки, нативности и подвижности ДНК проводили электрофоретическим методом на агарозном геле. Для амплификации участков генов ESR, PRLR, FSHβ и RYR1 подобраны праймеры и их концентрация. В качестве основы для проведения ПЦР-ПДРФ анализа использованы методики М.F. Rothschild et al. [3] и Т.Н. Short et al. [4], Г. Брем и Б. Бренинг [5], обеспечивающие оптимальную амплификацию участков генов ESR, PRLR, FSHβ и RYR1.

Амплификацию генов ESR, PRLR, FSH β и RYR1 проводили с использованием реакционной смеси объемом 25 мкл, содержащей 1хТаq-буфер, 2 мМ дНТ Φ (4 х 0,5мМ каждого), 10 пМ каждого праймера, 1,5 ед. акт. Таq-полимеразы, 100-200 нг геномной ДНК.

Для рестрикции амплифицированных участков генов ESR, PRLR, FSHβ и RYR1 использовали эндонуклеазы: PvuII, AluI, BsuRI и Hin6I соответственно. Реакцию проводили при температуре 37°С в течение

3-4 часов в реакционной смеси, содержащей 15 ед. акт. рестриктазы, 15 мкл амплификата. Продукты рестрикции генов ESR, PRLR, FSHβ и RYR1 разделяли электрофоретически в 4%-, 3%-, 4%- и 4%-ном агарозном геле соответственно. Растворы для электрофореза готовили по Маниатису [6]. Для анализа распределения рестрикционных фрагментов ДНК в агарозном геле после электрофореза использовали видеосистему VITran. Частоты генотипов и аллелей генов ESR, PRLR, FSHβ и RYR1, а также генетическое равновесие в популяции маток породы дюрок рассчитывали по Е.К. Меркурьевой [7].

Результаты эксперимента и их обсуждение. Анализ генетической структуры свиноматок породы дюрок выявил мономорфность по генам ESR, FSH β и RYR1 и только по гену PRLR установлен полиморфизм. Частоты встречаемости генотипов и аллелей по гену PRLR в популяции маток распределились следующим образом: PRLR^{AA} — 14,3 %, PRLR^{AB} — 48,7 %, PRLR^{BB} — 37 %, PRLR^A — 0,385, PRLR^B — 0,615. Несмотря на преобладание животных с гетерозиготным генотипом генетическое равновесие в популяции свиноматок не было нарушено (таблица 1).

Таблица 1 — Генетическая структура популяций свиноматок породы дюрок, разводимых на СГЦ «Заднепровский», по генам ESR, PRLR, FSHB и RYR1

Ген	Количество	Распреде-	Частота встреча-	Частота	X^2
	животных	ление	емости геноти-	встречаемо-	
			пов,%	сти аллелей	
ESR	70	Φ	AA – 100 AB – 0 BB – 0	0	-
PRLR	70	Φ	AA – 14,3 AB – 48,7 BB – 37,0	A – 0,385	0,07
PKLK	70	О	AA – 14,8 AB – 47,4 BB – 37,8	B – 0,615	0,07
FSHB	70	Φ	AA – 0 AB – 0 BB – 100	0	_
RYR1	70	О	NN – 100 Nn – 0 nn – 0	0	_

Возможным объяснением мономорфности популяции маток по генам ESR и FSHβ может служить то, что специфичность и важность выполняемой функции данных генов в детерминации репродуктивных

признаков у животных породы дюрок, являющейся супермясной. По мнению Гарт В.В. [2], правильнее рассматривать полиморфизм как относительно нейтральную изменчивость, связанную с второстепенными адаптивными свойствами вида, а генетический мономорфизм — как маркеры таких кардинальных функций, нормальная изменчивость которых биологически недопустима. Мутации в этой части генома приводят к патологии и отсекаются отбором на разных стадиях онтогенеза.

Однако мономорфность популяции по гену RYR1 является результатом целенаправленной селекционной работы на создание супермясных животных, устойчивых к злокачественной гипертермии.

Популяция хряков-производителей так же была мономорфна по генам ESR, FSH β и RYR1 (таблица 2), и только по гену PRLR установлен полиморфизм, где частоты встречаемости генотипов и аллелей распределились следующим образом: PRLR^{AA} – 15,2 %, PRLR^{AB} – 27,2 %, PRLR^{BB} – 57,6 %, PRLR^A – 0,0,288, PRLR^B – 0,0,712. При этом в популяции выявлено нарушение генетического равновесия (P<0,01) в сторону преобладания гомозиготных PRLR^{BB} особей, что, возможно, связано с проведением преимущественной селекции данной породы на увеличение мясной продуктивности.

Таблица 2 — Генетическая структура популяции хряковпроизводителей породы дюрок, разводимых на СГЦ «Заднепровский», по генам ESR. PRLR. FSHB и RYR1

HOTEHAM ESK, I KEK, I SHIB H K I KI						
Ген	Количество	Распреде-	Частота встре-	Частота	X^2	
	животных	ление	чаемости гено-	встречаемо-		
			типов, %	сти аллелей		
			AA - 0			
ESR	33		AB - 0	0	_	
		Φ	BB - 100			
	33		AA – 15,2			
		Φ	AB - 27,2			
PRLR			BB - 57,6	A - 0.288	7,3**	
			AA - 8,2	B - 0.712	7,5***	
		O	AB - 41,2			
			BB - 50,6			
			AA - 0			
FSHB	33	Φ	AB - 0	0	_	
			BB - 100			
RYR			NN - 100			
	33	ф	Nn - 0	0	_	
1		•	nn - 0			

Разница между фактическими (Ф) и ожидаемыми (О) распределениями генотипов достоверна при **P<0,01

Особого внимания требует изучение анализа генетического равновесия, нарушение которого у хряков-производителей не вызывает особого опасения, хотя дает информацию для анализа, поскольку это результат интенсивного отбора. Это же явление в основном стаде свиноматок служит серьезным предупреждением о дисбалансе генетического статуса популяции.

При изучении ассоциации полиморфизма гена PRLR с репродуктивными признаками свиноматок породы дюрок выявлена закономерность положительного влияния аллеля $PRLR^A$ и генотипа $PRLR^{AA}$ на ряд показателей (таблица 3).

Таблица 3 – Продуктивность популяции свиноматок породы дюрок, разводимых в РСУП «СГЦ «Заднепровский», по второму и последующим опоросам в зависимости от генотипа по гену PRLR

Поморожани	генотип PRLR			
Показатели	AA	AB	BB	
Количество голов	10	30	27	
Количество опоросов	3,17±0,87	$3,54\pm0,62$	2,42±0,45	
Супоросный период, дней	114,93±0,41	114,15±0,24	115,08±0,5	
Родилось поросят всего, гол.	11,14±0,37*	11,38±0,4	10,17±0,3	
В том числе живых, гол.	10,72±0,37*	$10,49\pm0,4$	$9,45\pm0,5$	
Масса гнезда при рожде-				
нии, кг	17,34±0,62	$16,29\pm0,7$	16,57±0,85	
Количество поросят в 21				
день, гол.	8,48±0,22	$8,86\pm0,14$	9±0,55	
Молочность, кг	48,11±2,05	47,77±1,4	51,56±1,06	
Количество поросят при				
отъеме, гол.	$8,48\pm0,22$	$8,78\pm0,15$	8,83±0,46	
Масса гнезда при отъеме в				
35 дней	73,02±4,21	77,96±4,17	80,37±3,7	
Процент мертворожден-				
ных поросят, %	3,56±1,53	7,79±1,96	$7,45\pm3,48$	
Процент аварийных опоросов, %	8,93±5,67***	13,22±4,42	61,67±10,61	

Разница между показателями генотипов AA и BB достоверна при *P<0,05, *** P<0,001

Установлено, что свиноматки с генотипом PRLR^{AA} превосходили животных с генотипом PRLR^{BB} по количеству родившихся поросят, на 1,0 поросенка, или на 9,5 % (P<0,05), в том числе живых – на 1,2 поросенка, или на 13,4 % (P<0,05), установлено снижение процента ава-

рийных опоросов на 53 % (Р<0,001).

Выявлена тенденция увеличения массы гнезда при рождении на 0,7 кг, или 4,6 %, и снижение процента мертворожденных поросят на 4 %.

Причиной более низкой молочности и массы гнезда при отъеме у маток генотипа $PRLR^{AA}$ в сравнении со свиноматками генотипа $PRLR^{BB}$ является технологическая подсадка поросят. Однако достоверных различий между данными генотипическими группами не установлено.

В результате изучения влияния гена на воспроизводительную функцию хряков-производителей породы дюрок выявлена закономерность положительного влияния аллеля $PRLR^A$ на ряд данных признаков (таблица 4).

Таблица 4 — Показатели спермопродукции популяции хряковпроизводителей породы дюрок разводимых в РСУП «СГЦ «Заднепровский». в зависимости от генотипа по гену PRLR

Поморожани	Генотипы			
Показатели	AA (n=5)	AB (n=9)	BB (n=19)	
Количество эякулятов,				
%	328	653	1332	
Объем эякулята, мл	163,8±13,6*	1363,66±10,73	$128,9\pm6,7$	
Концентрация сперми-				
ев, млн/мл	360,8±11,11	354,33±13,51	344,09±7,4	
Переживаемость, час	184,5±9,5*	157±6,81	154,29±10,67	

^{*} - Разница между показателями генотипов AA и BB достоверна при P<0,05,

Выявлено, что хряки генотипа PRLR^{AA} превосходили хряков генотипа PRLR^{BB} по объему эякулята на 35 мл, или на 27 % (P<0,05), и переживаемости спермиев на 20,2 часа, или на 19,5 % (P<0,05). Также наблюдалась тенденция увеличения концентрации спермиев на 16,7 млн/мл, или на 4,8 %.

Заключение. В результате анализа генетической структуры популяции породы дюрок, разводимых на СГЦ «Заднепровский», было выявлено, что свиноматки и хряки-производители были мономорфны по генам ESR, FSHB и RYR1, и только по гену PRLR установлен полиморфизм. При этом в популяции хряков-производителей выявлено нарушение генетического равновесия (P<0,01) в сторону преобладания гомозиготных PRLR^{BB} особей.

При изучении взаимосвязи гена PRLR с репродуктивными признаками свиноматок установлено достоверное влияние генотипа $PRLR^{AA}$ на количество родившихся поросят – на 9,5 % (P<0,05), в том числе живых — на 13.4 % (P<0,05). Установлено снижение процента мертворожденных поросят на 4 %.

В результате изучения влияния гена на воспроизводительную функцию хряков-производителей выявлено положительное влияние аллеля $PRLR^A$ на объем эякулята – на 27 % (P<0,05) и переживаемость спермиев – на 19,5% (P<0,05), увеличение концентрации спермиев на 4.8 %.

Литература

- 1. Шейко, И. П. Генетические методы интенсификации селекционного процесса в свиноводстве: моногр. / И. П. Шейко, Т. И. Епишко; Ин-т животноводства Нац. акад. наук Беларуси. Жодино, 2006. 197 с.
- 2. Журина, Н. В. Применение гена эстрогенового рецептора в маркерной селекции свиней на повышение репродуктивных признаков : автореф. дисс. ... канд. с.-х. наук / Журина Н.В. Жодино 2007. 21 с.
- 3. Rothschild, M. The estrogen receptor locus is associated with a major gene influencing litter size in pigs / M. Rothschild // J. Genetics. 1996. Vol. 93. P. 201-205.
- 4. Short, T. H. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines / T. H. Short // J. Anim. Sc. 1997. Vol. 75, N 12. P. 3138-3142.
- 5. Брэм, Г. Использование в селекции свиней молекулярной генной диагностики злокачественного гипертермического синдрома (MHS) / Г. Брэм, Б. Бренинг // Генетика. 1993. Т. 29, № 6. С. 1009-1013.
- 6. Маниатис, Т. Молекулярное клонирование / Т. Маниатис, Э. Фрич, Дж. Сэмбрук. М. : Мир, 1984. 480 с
- 7. Меркурьева, Е. К. Генетические основы селекции в скотоводстве / Е. К. Меркурьева. М. : Колос, 1977. 280 с.

(поступила 4.03.2008 г.)

УДК 636.4:575.174.015.3

Т.И. ЕПИШКО, М.А. КОВАЛЬЧУК, Н.В. ЖУРИНА, О А ЕПИШКО

ПОЛИГЕННЫЙ ХАРАКТЕР ДЕТЕРМИНАЦИИ ОТКОРМОЧНЫХ КАЧЕСТВ СВИНЕЙ БЕЛОРУССКОЙ МЯСНОЙ ПОРОДЫ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Интенсивная селекция на создание мясных генотипов в свиноводстве и использование пород ландрас и пьетрен привели, наряду с положительным эффектом увеличения содержания мяса в туше, к отрицательным последствиям: снижению качества мяса и появлению