- В. П. Цай. Мн. : Хата, 2002. 158 с.
- 2. Авраменко, П. С. Производство силосованных кормов / П. С. Авраменко, Л. М. Постовалова. Мн. : Ураджай, 1984. 144 с.
- 3. Коржуев, А. П. Критический анализ гематологических исследований в связи с физиологической характеристикой с.-х. животных / А. П. Кожуев // Совещания по биологическим основам продуктивности животных. М., 1957. С. 26-29.
- 4. Клеймёнов, Н. И. Кормление молодняка крупного рогатого скота / Н. И. Клеймёнов. М. : Агропромиздат, 1987. 266 с.
- 5. Георгиевский, В. И. Физиология сельскохозяйственных животных / В. И. Георгиевский. М.: Агропромиздат, 1990. 510 с.

УДК 574.4/5:539.163

А.А. ЦАРЁНОК, И.В. ЯНОЧКИН, Р.А. НЕНАШЕВ, С.А. КАЛИНИЧЕНКО

ДОПУСТИМЫЕ ПАРАМЕТРЫ ЗАГРЯЗНЕНИЯ ⁹⁰Sr И ¹³⁷Cs КОРМОВЫХ УГОДИЙ И КОЭФФИЦИЕНТЫ ПЕРЕХОДА РАДИОНУКЛИДОВ ИЗ БОБОВЫХ ТРАВ В МОЛОКО КОРОВ

РНИУП «Институт радиологии»

Введение. В структуре годового кормового баланса зеленые корма занимают 30-35 % по питательности [1]. В рационах летнепастбищного периода на долю зелёных кормов приходится 80-85 %, а в отдельных случаях они являются единственным кормовым средством. Для наиболее эффективного использования данного вида корма целесообразна организация системы зелёного конвейера, с подбором культур, учётом потребностей и условий содержания крупного рогатого скота. При этом основным источником пополнения кормов белком в летне-пастбищный период являются бобовые культуры, которые больше других кормовых растений ассимилируют в семенах, стеблях и листьях белок, отличающийся высокой переваримостью в организме животных. Без дополнительных затрат азотных удобрений за счёт этих культур можно получить 15,3-17,2 ц/га переваримого протеина при выходе с 1 га 108-115 ц к. ед. и содержании в 1 к. ед. 133-150 г протеина [2]. Однако, ввиду того, что представители семейства бобовых отличаются от злаковых культур наибольшими параметрами накопления радионуклидов, в частности Sr, в первые годы после аварии на ЧАЭС было принято решение сократить посевные площади бобовых культур на загрязнённых радионуклидами территориях. В действительности существующие жёсткие нормативы по содержанию ⁹⁰Sr в молоке (3,7 Бк/л) и рационе (2570 Бк/сутки) сдерживают возможности использова-

ния бобовых культур в кормлении лактирующих коров [3, 4]. Тем не менее, последние исследования по уточнению коэффициентов перехода (КП) 90Sr из рациона на основе зелёной массы клевера в молоко коров наметили пути решения этой проблемы. Так, было установлено, что при выращивании клевера и злаковых культур на территориях с одинаковой плотностью загрязнения почвы стронцием-90 и последующего их скармливания лактирующим коровам не наблюдалось достоверных различий в уровне загрязнения молока, хотя суммарная активность клеверного рациона была при этом выше в 3 раза, чем злакового [5, 6]. Известно, что на поведение стронция оказывает влияние кальций, и у этих двух элементов обычно одинаков метаболизм, однако существуют различия во многих процессах перехода [5, 6, 7, 8]. Так, установлена дискриминация перехода радиоактивного стронция по отношению к кальцию в желудно-кишечном тракте и молочной железе по скорости отложения в костной ткани и выделении с мочой [9, 10]. Для описания общего «дискриминационного» перехода между рационом и различны ми частями тела, молоком и выделениями Comar и др. [11] предложили использовать термин стронций-кальциевое наблюдаемое отношение (НО). Имеющиеся в литературе сведения свидетельствуют, что величина НО польши одинакова для всех изучаемых видов животных, включая нежвачных, и составляет в среднем 0,11, варьируя от 0,03 до 0,40 в зависимости от обеспеченности рациона кальцием [12].

Повышенное содержание кальция в бобовых обуславливает более низкий переход 90 Sr из рациона в молоко (КП – 0,12 %) по сравнению с рационом, состоящим из злаковых трав (КП – 0,27 %) [7]. Для решения проблемы обеспечения крупного рогатого скота сбалансированными по белку кормами в летний пастбищный период требуется комплексный подход, включающий выбор оптимальной структуры посевных площадей с различной долей бобовых культур в зависимости от плотности загрязнения кормовых угодий. При этом необходимость проведения дальнейших исследований по изучению параметров миграции радионуклидов в молоко коров при использовании рационов на основе бобовых культур не вызывает сомнений, так как многолетние бобовые травы в системе летнего кормления животных играют немаловажную роль, выступая с одной стороны как главный источник белка, а с другой стороны – как аккумуляторы радиоактивности при организации зелёного конвейера на загрязнённых радионуклидами землях. Исследований по изучению параметров загрязнения кормовых угодий цезием и стронцием и накопления их через бобовые травы в молоке в условиях радиоактивного загрязнения не проводилось.

Мы поставили цель – изучить допустимые параметры загрязнения

⁹⁰Sr и ¹³⁷Cs кормовых угодий и коэффициенты перехода радионуклидов из бобовых трав в молоко коров.

Материал и методика исследований. Научно-хозяйственный эксперимент по изучению допустимых параметров загрязнения ¹³⁷Cs и 90Sr кормовых угодий и коэффициентов перехода радионуклидов из бобовых трав в молоко коров при использовании в рационе многолетних бобовых трав (клевер, люцерна) проводился на базе СПК «Стреличево» в населённом пункте Рудаков и на территории Полесского государственного радиационно-экологического заповедника (ПГРЭЗ) в бывшем населённом пункте Воротец Хойникского района. Площадь кормовых угодий, занятых люцерной посевной (участок I, СПК «Стреличево») и клевером красным (участок II, Воротец), составляет 132 и 82 га, соответственно. Посевы расположены на дерново-подзолистых супесчаных почвах. Для проведения исследований по методу аналогов были сформированы и переведены на стойловое содержание 3 группы дойных коров чёрно-пёстрой породы (2 опытных, 1 контрольная) численностью 5 голов в каждой группе. Возраст животных на момент начала эксперимента составил 5 лет (4-й месяц лактации), живая масса – 500 кг, суточный удой – 12-15 л. В состав суточных рационов опытных групп включали зелёную массу клевера красного в бывшем населённом пункте (Воротец) и люцерну в населённом пункте (Рудаков) в количестве 60 кг. Дополнительно животные получали индивидуально 1,5 кг комбикорма во время утреннего доения. Суточный рацион контрольной группы животных состоял из зелёной массы многолетних злаковых культур и дополнительно 1,5 кг комбикорма. Периодичность кормления – двукратно в сутки. Учёт поедаемости корма проводился индивидуально для каждого животного путём взвешивания зелёной массы до раздачи в кормушки и повторного взвешивания не съеденных остатков. Схема опыта приведена в табл. 1.

Продуктивные показатели опытных и контрольных животных определялись путём взвешивания удоя во время утреннего и вечернего доения индивидуально от каждой коровы.

В процессе опыта брали пробы молока 2 раза в неделю во время вечернего доения и зелёной массы кормов для определения содержания ¹³⁷Cs и ⁹⁰Sr. Для расчёта параметров перехода радионуклидов в цепи «почва-корм-молоко» на кормовых угодьях произведён отбор средних проб почвы (по две с каждого кормового угодья) для определения содержания в них ¹³⁷Cs и ⁹⁰Sr. Величина стронций-кальциевого отношения рассчитывается следующим образом:

$$HO_{\text{мол-рац}} = \frac{[\text{Sr}]_{\text{мол}}/[\text{Ca}]_{\text{мол}}}{[\text{Sr}]_{\text{рац}}/[\text{Ca}]_{\text{рац}}}$$
 где [Sr] $_{\text{мол.}}$ [Ca] $_{\text{мол.}}$ [Sr] $_{\text{рац}}$ и [Ca] $_{\text{рац}}$ – содержание стронция-90

Схема эксперимента

Таблица 1

Группы	Количе-	Продолжительность опыта,			
	ство го-	сутки		Особенности кормления	
	ЛОВ	предваритель-	учётный	Осоосиности кормления	
		ный период	период		
Контроль- ная	5	7	21	Зелёная масса злаковых культур (тимофеевка + овсяница луговая) – 60 кг на 1 голову + 1,5 кг комбикорма	
I опытная	5	7	21	Зелёная масса люцерны — 60 кг на 1 голову + 1,5 кг комбикорма	
II опытная	5	7	21	Зелёная масса клевера — 60 кг на 1 голову + 1,5 кг комбикорма	

Результаты эксперимента и их обсуждение. Радиологическое обследование почв кормовых угодий базовых хозяйств, где проводилось скашивание зелёной массы бобовых культур, выявило достаточно высокое содержание Sr в почвах, занятых клевером и люцерной. Плотность загрязнения ⁹⁰Sr участков, занятых под клевер и люцерну, варьирует в пределах 19-21 кБк/м² (табл. 2), что ведёт к значительной степени радиоактивного загрязнения получаемой зелёной массы этих бобовых культур.

Таблица 2 Плотность загрязнения радионуклидами почвы экспериментальных кормовых угодий

Номер эксперимен- тального участ-	Плотность загрязнения почвы 90Sr		Плотность загрязнения почвы ¹³⁷ Cs	
ка/культура	$\kappa \mathbf{E} \kappa / \mathbf{M}^2$	$Kи/км^2$	кБк/м ²	Ки/км ²
I / Люцерна посевная	19,62±4,12	0,53±0,11	627,47±156,87	16,96±4,24
II / Клевер красный	20,65±5,71	$0,56\pm0,15$	92,44±24,65	$2,50\pm0,67$
III / Злаковая травосмесь	4,37±0,58	$0,12\pm0,02$	56,82±27,18	1,54±0,73

При этом содержание °Sr в почвах, занятых многолетними злаковыми травами, составляет всего лишь 4-5 к $\rm Kem^2$. В отношении Cs, за исключением угодий под люцерной, отмечается невысокая плотность загрязнения экспериментальных участков, колеблющаяся в пределах 56-92 к $\rm Kem^2$.

Результаты исследования уровня радиоактивного загрязнения зелёной массы многолетних бобовых культур и злаковой травосмеси показали, что наиболее высоким содержанием Sr отличается зелёная масса

клевера и люцерны, входящая в рацион животных I и II опытной группы (табл. 3). Анализ этих кормов выявил превышение РДУ-99 (37 $\,$ Бк/кг) в 2-3 раза.

Таблица 3 Содержание радионуклидов в кормах, рационе и молоке опытных групп животных, Бк/кг, Бк/л

			90.0	137.0
Группа	Сутки	Вид пробы	⁹⁰ Sr	¹³⁷ Cs
животных	опыта		0.56.1.20	7.65.016
	1	Молоко	8,56±1,29	7,65±2,16
		Люцерна	69,23±20,24	10,79±3,60
	3	Молоко	$7,72\pm0,98$	5,59±1,62
		Люцерна	86,50±22,37	12,43±2,87
	7	Молоко	6,50±0,67	3.51±0,27
	,	Люцерна	73,43±24,50	14,07±12,15
I опытная	14	Молоко	$5,65\pm0,74$	$3,26\pm0,20$
		Люцерна	110,58±33,03	14,04±2,72
	21	Молоко	6,08±0,71	3,38±0,23
	21	Люцерна	108,34±28,36	13,05±2,44
	Молоко (среднее)		6,90±0,60	4,67±2,82
	Люцерна (среднее)		89,62±9,61	12,88±2,76
	Содержание в рационе		5377	772
	1	Молоко	10,67±1,74	41,15±5,62
	1	Клевер	109,90±17,99	76,00±3,39
	3	Молоко	12,72±1,44	39,78±7,56
		Клевер	103,0±16,23	86,12±10,34
	7	Молоко	11,59±1,23	27,91±2,89
		Клевер	97,00±17,58	60,10±8,15
II опытная	14	Молоко	10,48±1,65	29,67±4,35
		Клевер	95,12±21,4	69,45±9,12
		Молоко	11,89±2,56	27,12±4,87
	21	Клевер	113,60±23,76	61,40±6,79
	Молоко (среднее)		11,47±0,46	33,13±3,39
	Клевер (среднее)		103,72±4,01	70,59±15,41
	Содержание в рационе		6222	4235
	1	Молоко	1,52±0,14	6,43±0,33
	1	Злаковая травосмесь	7,27±2,44	12,16±2,91
Контрольная	3	Молоко	1,30±0,25	7,36±0,51
		Злаковая травосмесь	8,86±1,50	11,32±1,30
	7	Молоко	1,09±0,15	5,95±0,85
	,	Злаковая травосмесь	9,23±1,06	10,01±2,81
	14	Молоко	1,12±0,24	5,62±1,40
		Злаковая травосмесь	10,34±1,30	9,16±12,81
	21	Молоко	1,32±0,40	7,05±1,01
	۷1		1,32±0,40 8,79±0,54	7,05 \pm 1,01 7,76 \pm 1,32
	Злаковая травосмесь		, , , , , , , , , , , , , , , , , , ,	, ,
1	Молоко (среднее)		1,27±0,09	6,48±0,36
	Злаковая травосмесь (среднее)		8,90±0,55	10,08±0,87
	Содержание в рационе		534	604

Содержание °Sr в зелёной массе многолетних злаковых трав, составлявшей рацион животных контрольной группы, соответствовало нормативным требованиям (37 Бк/кг) и варьировало в пределах 7-10 Бк/кг.

Относительно ¹³⁷Cs не установлено случаев превышения РДУ-99 (165 Бк/кг) его содержания, как в зелёной массе бобовых культур, так и в случае кормления зеленой массой многолетних злаковых трав. При этом максимальным уровнем загрязнения обладала зелёная масса клевера (до 86 Бк/кг).

Радиологический анализ рационов и молока КРС опытных и контрольной групп животных на содержание ⁹⁰Sr и ¹³⁷Cs выявил достаточно высокую корреляцию с уровнем загрязнения используемых кормов. При этом в случае кормления животных зелёной массой люцерны и клевера наблюдается 2-3-кратное превышение РДУ-99 по содержанию ⁹⁰Sr, обусловлено высокой плотностью радиоактивного загрязнения кормовых угодий, занятых данными культурами (см. табл. 2).

Исходя из полученных данных, установлены коэффициенты перехода радионуклидов 137 Cs и 90 Sr из рациона в молоко коров при скармливании зелёной массы многолетних бобовых и злаковых трав (табл. 4).

Таблица 4 Коэффициенты перехода радионуклидов из рациона опытных групп животных в молоко КРС (в среднем за весь период наблюдений), %

Группы животных	КП ⁹⁰ Sr	КП ¹³⁷ Сг из рациона в	
		молоко	
I опытная группа (люцерна)	$0,14\pm0,03$	0,63±0,10	
II опытная группа (клевер)	$0,18\pm0,01$	0.78 ± 0.04	
Контрольная группа (злаковая травосмесь)	$0,24\pm0,03$	$1,10\pm0,12$	

Анализ данных по КП 90 Sr из рациона в молоко выявил его достоверное снижение (P<0,05) в I группе коров, получавшей в рационе зелёную массу люцерны, по сравнению с остальными экспериментальными группами. Это обстоятельство можно объяснить различной степенью обеспечения рационов животных опытных и контрольной групп кальцием. В табл. 5 приведены данные по содержанию кальция в кормах, рационах и молоке, а также величины стронций-кальциевого наблюдаемого отношения (HO).

Из приведённых данных видно, что наиболее обеспечен рацион кальцием у животных, получавших зелёную массу люцерны. Содержание кальция в рационе при этом соответствовало физиологической норме для лактирующих коров с данной продуктивностью и живой массой (норма – 89 г/сутки). В то же время в рационе коров, получав-

ших зелёную массу злаковой травосмеси, этот показатель имел намного более низкую величину, что явилось причиной повышенного перехода 90 Sr из рациона в молоко. При анализе клеверного рациона также выявлен незначительный недостаток кальция, что повлекло некоторое повышение величины КП $_{\text{рацион-молоко}}$ 90 Sr по сравнению с рационом на основе люцерны. В целом уровень обеспеченности организма лактирующих коров кальцием хорошо характеризуется величиной наблюдаемого отношения, которое в случае кормления люцерной соответствует литературным данным (0,11) при содержании кальция в пределах нормы, а в случае кормления клевером и злаковой травосмесью имеет тенленцию к повышению.

Таблица 5 Содержание кальция в кормах, рационе и молоке коров опытных и контрольной групп

Группы	Содержание кальция				Наблюдае-
животных	Корм, г/кг		Рацион, г/сутки	Молоко, г/л	мое отно- шение (НО)
I опытная (люцерна)	Люцерна Комбикорм	1,40±0,14 5,4	92	1,03+0,03	0,11
II опытная (клевер)	Клевер Комбикорм	1,00±0,04 5,4	68	1,02+0,03	0,13
Контрольная (злаковая травосмесь)	Злаковая травосмесь Комбикорм	0,80±0,06 5,4	56	1,02+0,04	0,13

В отношении КП ¹³⁷Сs также отмечается его более низкое поступление в молоко КРС при кормлении люцерной по сравнению с животными, получавшими зелёную массу клевера и злаковых трав. Однако эти различия носят недостоверный характер.

В целом расчёты показывают, что с учётом установленных параметров перехода 90 Sr и 7 Cs из рациона на основе многолетних бобовых трав в молоко коров максимально допустимое содержание этих радионуклидов в суточном рационе не должно превышать 1680 Бк для 90 Sr и 11000 Бк для 137 Cs. При превышении этих величин содержание радионуклидов в молоке будет выше принятых РДУ-99 (3,7 Бк/л и 100 Бк/л, соответственно, для 90 Sr и 137 Cs).

Заключение. Коэффициент перехода ⁹⁰Sr из рациона на основе зелёной массы люцерны посевной и клевера красного в молоко КРС составляет 0,14 и 0,18 %, соответственно. Коэффициент перехода ¹³⁷Cs из рациона на основе зелёной массы люцерны посевной и клевера красного в молоко КРС составляет 0,63 и 0,78 %, соответственно. С целью получения нормативно-чистого молока использование зелёной массы люцерны посевной в качестве монокорма в летнем рационе лактирующих коров возможно при её возделывании на территориях с плотно-

стью загрязнения 90 Sr до 5,55 кБк/м 2 (0,15 Ки/км 2) и 137 Cs - 925 кБк/м (25 Ки/км 2). В отношении клевера красного предел плотности загрязнения кормовых угодий составляет 3,7 кБк/м (0,1 Ки/км) для Sr и 925 кБк/м (25 Ки/км 2) - для 137 Cs.

Литература

- 1. Состав и питательность кормов : справочник / И. С. Шумилин [и др.]. М. : Агропромиздат, 1986.-303 с.
- Доспехов, Б. А. Методика полевого опыта / Б. А. Доспехов. М.: Колос, 1979. 416 с.
- 3. Рекомендации по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь / под ред. И. М. Богдевича. Мн., 2003. 72 с.
- 4. Алексахин, Р. М. Защитные мероприятия в агропромышленном производстве при радиационной аварии / Р. М. Алексахин // Атом, энергия. 1992. Т. 72, № 2. С. 206-208.
- 5. Корнеев, П. А. Основы радиоэкологии сельскохозяйственных животных / П. А. Корнеев, Н. А. Сироткин. М.: Энергоатомиздат, 1987. 184 с.
- 6. Сельскохозяйственная радиоэкология / под ред. Р. М. Алексахина и Н. А. Корнеева. М. : Экология, 1992. 400 с.
- 7. Сироткин, А. Н. Поступление 90 Sr в молоко коров с разными уровнями содержания и источниками кальция в рационе / Н. А. Сироткин // Сельскохозяйственная биология. 1978. Т. 13. С. 234-237.
 - 8. McDonald, P. [et al.] // Animal Nutrition. 1995. N 5. P. 235-242.
- Mineral tolerance of domestic animals / National Research Council. Washington, 1980.
 219 p.
- Nutrient requirements of sheep / National Research Council. Washington, 1985. 112
 D.
- 11. A review of requirements of dairy and beef cattle for major elements / A. C. Comar [et al.] // Livestock Prod. Sci. 1983. Vol. 10. P. 327-338.
- 12. Lengemann, F. W. Overall aspects of calcium and strontium absorption / F. W. Lengemann // Transfer of calcium and strontium across biological membranes. London, 1963. P. 85-96.

УДК 636.2.086.1:636.2.085.2

Д.В. ШИБКО

ПРОДУКТИВНОСТЬ И ПИТАТЕЛЬНАЯ ЦЕННОСТЬ ЗЕЛЁНОЙ МАССЫ СОРГО-СУДАНКОВОГО ГИБРИДА

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Темпы развития животноводства и рост его экономической эффективности в первую очередь определяются успехами в создании прочной кормовой базы, которая обеспечивает животных до-