тр. – Л., 1986. – С. 17-21.

11. Larsen, P. O. Glucosinolates / P. O. Larsen // The Biochemistry of Plants. A Comprehensive Treatment of Secondary Plant Products / Akademic Press. – New York, 1981 – Vol. 7. – P. 501-526.

(поступила 24.02.2010 г.)

УДК 636.2.085.12

А.И. САХАНЧУК, М.Г. КАЛЛАУР, В.А. ДЕДКОВСКИЙ, В.П. БУЧЕНКО, Ж.В. РОМАНОВИЧ

ОПТИМИЗАЦИЯ МИНЕРАЛЬНО-ВИТАМИННОГО ПИТАНИЯ СТЕЛЬНЫХ ВЫСОКОПРОДУКТИВНЫХ КОРОВ В СУХОСТОЙНЫЙ ПЕРИОД ПРИ ЗИМНЕМ КОРМЛЕНИИ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Известно, что беременность накладывает сильный отпечаток на обмен веществ в материнском организме, в особенности на минеральный, который у стельных высокопродуктивных коров характеризуется значительной напряженностью. Это связано с тем, что последнюю треть стельности наблюдается интенсивный рост и формирование органов плода, для осуществления которых организму коров требуются оптимальные количества минеральных элементов и витаминов. Вместе с тем, высокопродуктивные коровы нуждаются в более высокой концентрации как энергии, так и минеральных веществ на 1 кг сухого вещества рациона, чем среднепродуктивные. Оптимальный уровень макро- и микроэлементов и их соотношение в рационах изменяется в широких пределах в зависимости от зональных условий и типа кормления [1, 2].

Обычно растительные корма, составляющие основу рационов коров, не удовлетворяют потребности животных в ряде нормируемых как минеральных элементов, так и витаминов либо из-за недостаточного их количества, либо вследствие плохого усвоения их организмом, в результате наблюдаются различные отклонения в минеральном обмене, ухудшается потребление корма и его переваримость [1, 3]. Поэтому обогащение рационов минеральными и витаминными добавками является необходимым условием повышения полноценности кормления, особенно высокопродуктивных коров с удоем 7 тыс. кг молока и более за лактацию. Однако состав их и дозы скармливания в разных регионах существенно различаются [4, 5].

В последние десятилетия в странах с развитым молочным скотоводством проводятся исследования по уточнению и пересмотру норм минерального питания животных, разработке эффективных минеральных добавок и совершенствованию технологии их скармливания.

По данным ряда исследователей [6, 2, 7], при сравнении норм потребности по минеральному и витаминному питанию стельных сухостойных коров живой массой 600 кг с плановым удоем 7-10 тыс. кг молока за лактацию в расчете на 1 кг сухого вещества видно, что они по наиболее известным элементам имеют определенные различия (таблица 1).

Таблица 1 – Ориентировочная потребность стельных сухостойных коров в минеральных элементах и витаминах (в расчете на 1 кг сухого вещества)

	Плановый удой 7-10 тыс. кг			
	ВАСХНИЛ	БелНИИЖ	МосГАВМ,	
Элемент	(1985),	(1992)	Топорова	
	PACXH		Л. (2007)	
	(2003)			
Кальций, г	9,15-9,25	10,21-10,20	-	
Фосфор, г	5,28-5,47	6,34-6,37	-	
Магний, г	1,69-1,78	1,9	1,6	
Сера, г	2,11-2,19	2,5	1,6	
Калий, г	6,34-6,64	6,34-6,64	6,5	
Натрий, г	2,20-2,27	2,20-2,27	1,0	
Железо, мг	66,5-69,9	65,5-69,9	50	
Медь, мг	9,51-9,93	10,91-0,89	10	
Цинк, мг	47,5-50	60	40	
Марганец, мг	47,5-50	60	40	
Кобальт, мг	0,67-0,70	1,0	0,1	
Йод, мг	0,67-0,70	1,20	0,6	
Каротин, мг	57,0-59,9	75	-	
Витамин Д, тыс. МЕ	1,14-1,20	1,70	-	
Витамин Е, мг	38,0-40,1	60	-	

Целью настоящего эксперимента стала сравнительная оценка эффективности повышенного уровня фосфора, кальция, меди, цинка, кобальта, йода и витаминов А и Д по сравнению с нормами ВАСХНИЛ (1985) и РАСХН (2003) для стельных коров в сухостойный период при зимнем кормлении, усвояемость питательных и минеральных веществ кормов рациона, а также последействие их на проявление животными молочной продуктивности в последующие два месяца лактации, био-

химические показатели крови и оплату корма продукцией.

Материал и методика исследований. В РСУП «Племзавод «Кореличи» Гродненской области на трех группах стельных корованалогов черно-пестрой породы в сухостойный период (по 7 голов в каждой) при зимнем кормлении (январь-апрель 2009 года) проведен научно-хозяйственный и физиологический (балансовый) опыты.

Согласно условиям опыта коровы I группы были контрольными, II и III – опытными.

При постановке на опыт коровы находились в среднем по группам: I- на 7,62, II-7,69 и III-7,73 месяце стельности со времени последнего отела. Надой скорректированного молока 4%-ной жирности коров подопытных групп за предыдущую лактацию не имел заметных различий и составлял от 7740 до 8140 кг. По количеству предыдущих лактаций заметных различий не наблюдалось и составляло соответственно группам: в I-2,57, во II и III-1,57-1,71.

Кормовые рационы составляли по детализированным нормам (ВАСХНИЛ, 1985 и РАСХН, 2003) с включением в них сена и сенажа из многолетних злаково-бобовых трав силоса из кукурузы, патоки свекловичной, зерносмеси хозяйственного изготовления, содержащей комплексную минерально-витаминную добавку, которая, в свою очередь, состояла из кормовых мела, монокальцийфосфата, поваренной соли, соответствующих солей микроэлементов, витаминных концентратов, и были сходными по питательности для всех групп, с той лишь разницей, что коровам II и III групп в составе хозяйственной кормосмеси задавали в расчете на 1 кг сухого вещества минеральные элементы в количестве: фосфор -5.92 и 6.19 г, кальций -9.86 и 10.32 г, медь -10,45 и 11,18 мг, цинк -61,02 и 73,23, кобальт -0,739 и 0,791, йод -0,791 и 0,894 мг; витамин A-29,71 и 35,13 тыс. МЕ и витамин Д 1,26 и 1,35 тыс. ME, или, соответственно, выше на 10,0-15,0 и 7,5-12,2 %, по микроэлемента – на 7,5-15,0 %, 25,0-50,0, 7,5-15.0. 15.0-30.0%, по витамину A – 25-50 и витамину Д – 7,5-15,0 % по сравнению с контрольными.

Во второй половине учетного периода при зимнем кормлении провели физиологический (балансовый) опыт по определению переваримости у стельных коров основных питательных веществ, обмена азота и минеральных веществ по общепринятой методике. Животные подопытных групп содержались в 4-рядном типовом коровнике, оборудованном автопоением, на цепной привязи.

Эффективность применения новых норм изучалась путем оценки следующих показателей: химический состав кормов, молока, кала, мочи; поедаемость кормов — на основании ежедекадных кормлений; морфологический и биохимический состав крови; продолжительность сухостойного периода; молочная продуктивность коров в последую-

щие два месяца лактации; экономические данные.

Результаты эксперимента и их обсуждение. Показатели, отражающие особенности стельных коров в сухостойный период, их молочную продуктивность в последующие два месяца лактации представлены в таблице 2.

Таблица 2 – Итоговые данные по сухостойному периоду стельных ко-

n	Ω D
v	UВ

Показатель	Группа		
Показатель	I	II	III
Живая масса коров, кг:			
в начале периода	580,0	579,4	579,7
в конце периода	619,6	619,1	616,3
Среднесуточный прирост, массы тела, г	701,3	731,6	690,0
Продолжительность сухостойного пе-			
риода, дней	56,43	54,29	53,0
Суточный удой молока натуральной			
жирности, кг	30,14	30,28	29,50
Проценты жира в молоке	3,675	3,698	3,661
Удой молока 4%-ной жирности:	28,67	28,91	28,00
в % к І группе	100,0	100,85	97,66
в % к II группе	99,17	100,0	96,85
Живая масса телят, кг:			
при рождении	29,57	29,86	29,43
через 10 дней	36,69	37,26	36,51
Среднесуточный прирост за период вы-			
ращивания, г	712	740	708
в % к контролю	100,0	103,9	99,44
Затраты корма на 1 кг прироста, к. ед.	2,739	2,635	2,754
в % к контролю	100,0	96,21	100,6

Из данных таблицы 3 следует, что применение стельным высокопродуктивным коровам вышеназванных элементов в повышенных дозах в сухостойный период несколько сокращает его продолжительность на 2,14-3,43 дня (54,29 и 53,00 дней) по сравнению с контролем.

В свою очередь, умеренное повышение уровня фосфора на 10,0 % и одновременное микроэлементов сопровождалось более высоким приростом живой массы у коров II группы по сравнению с таковым в контрольной (на 4,32 %) и заметным по отношению к III (на 6,03 %) группах.

Среднесуточный удой молока натуральной жирности за первые 2 месяца лактации оказался несколько выше у коров II группы по срав-

нению с контрольной и с III опытной группы. В свою очередь, количество скорректированного молока 4%-ной жирности у коров II группы также было выше по сравнению с контрольной и III опытной групп на 0,85 и 3,15 %, которое в III группе по отношению к I группе оказалось меньше на 2,34 %.

Новорожденные телята, полученные от коров II группы, по живой массе и среднесуточному приросту массы в профилакторный период выращивания несколько превосходили сверстников I и III групп – на 3,9 и 4,5%.

Таким образом, умеренное повышение уровня фосфора (на 10 %) и комплекса микроэлементов по сравнению с чрезмерным их количеством и существующими нормами положительно повлияло и на молочную продуктивность коров и внутриутробное развитие плода, благодаря чему в постэмбриональный период у них проявилось повышенная резистентность организма к лучшему росту и развитию. Подобную же особенность (закономерность) отмечали в своих исследованиях М.Ф. Сафаров и А. С. Сулайманов и др. [8].

Анализ данных физиологического (балансового) опыта показал, что при зимнем кормлении умеренное повышение фосфора и микроэлементов в рационах коров II группы вызвало незначительную тенденцию к улучшению переваримости органического вещества в целом по сравнению как с I контрольной (на 1,43 %), так и III опытной (на 1,67%) группами, которая проявлялась в более заметной разнице по протеину между II и I группами (на 7,43 %) (таблица 3).

Таблица 3 – Переваримость органических веществ рационов у сухостойных стельных коров, %

Показатель	Группа		
Показатель	I	II	III
Органическое вещество	67,36±0,55	68,79±0,27	67,12±0,70
Сырой протеин	62,36±1,77	$69,79\pm2,18$	69,38±1,12
Сырой жир	44,16±0,20*	$42,49\pm0,28$	46,46±0,89
Сырая клетчатка	54,59±0,99	$54,70\pm0,69$	53,10±0,39
БЭВ	75,81±0,94	$76,63\pm0,35$	74,42±1,36

В то же время, выявленная разница (на 1,66 %) в переваривании жира между I и II группами оказалась статистически достоверной (P<0,05).

Использование азота у коров II группы в сравнении с I контрольной было достоверно выше, как от принятого с кормом (на 6,75 %), так и от переваренного организмом (на 4,51 %, P<0,05), а между III и I группами по вышеназванным показателям различия имели тенденцию к

достоверности (Р<0,1).

Использование кальция и фосфора у коров II группы от принятого с кормом в сравнении с I группой было заметно выше (на 12,79 и 4,30%) и имело тенденцию к достоверности (P<0,1).

Использование натрия у коров III группы от принятого с кормом было наименьшим по сравнению как со II опытной, так и I контрольной группами.

В обмене меди и цинка использование их от принятого с кормом у коров III и II групп хотя и было выше в сравнении с контрольной, тем не менее, выявленные различия недостоверны.

Использование марганца от принятого с кормом проявлялось лучше у коров III опытной группы в сравнении с I контрольной, в особенности по отношению ко II группе, так как имело тенденцию к достоверности (P<0,1).

Морфолого-биохимические свойства крови у коров всех групп в учетные периоды опытов находились в пределах колебаний физиологической нормы и не имели существенных различий.

Вместе с тем, в конце опыта в крови коров II опытной группы в сравнении с III и I групп выявлено более умеренное содержание гемоглобина, число эритроцитов и лейкоцитов, билирубина общего, отражающее меньшее напряжение кроветворных органов циркулирующими продуктами распада. В свою очередь, в крови коров II группы отмечено более высокое содержание общего белка, его альбуминовой и в особенности глобулиновой фракций, происходившее за счет заметного повышения бета-глобулинов при значительном снижении гаммаглобулинов, которое, по данным И.П. Кондрахина и соавт. [9], может наблюдаться при токсикозе беременности, липоидном и амилоидном нефрозе.

Расчеты экономической эффективности (таблица 4) показали, что умеренное повышение уровня нормируемых фосфора, кальция, натрия, микроэлементов, витаминов А и Д в рационах коров II опытной группы в сравнении с контрольной обусловило «удорожание» рациона, тем не менее рост молочной продуктивности обусловил дополнительный выход «условной» продукции и прибыли от продажи молока базисной жирности (3,6 %) в среднем на 1 голову на 111 руб. (реализационая хозяйственная цена в 2009 г. составляла 621,5 руб.). В то же время, значительное увеличение изучаемых факторов питания, в частности, фосфора — на 15 %, в III опытной группе в сравнении со II и контрольной группами оказалось экономически неэффективным в связи со снижением молочной продуктивности и не окупаемостью израсходованных добавок, поскольку стоимость их превышала выручку от выхода продукции на 758 руб.

Таблица 4 – Экономическая эффективность разных уровней макро- и микроэлементов в рационах стельных коров в сухостойный период

Показатель	Группа		
Показатель	I	II	III
Среднесуточный удой молока базис-			
ной жирности (3,6 %), кг	30,77	31,11	30,00
Выход продукции в денежном выра-			
жении, руб.	19123	19335	18645
Израсходовано минеральных добавок:			
г/гол./дн.	315,2	349,6	367,6
Стоимость израсходованных добавок,			
руб./гол.	259,73	360,37	429,32
Выход продукции в расчете на 1 руб.			
израсходованных добавок, руб.	18864	18974	18216
Разница с I группой, ± руб.	-	+110,7	-648,3
Разница с II группой, ± руб.	-	-	-758

Заключение. В результате применения умеренно повышенных уровней макро- и микроэлементов, витаминов А и Д, в частности фосфора на 10,0 % в сравнении с 15,0 % и существующим уровнем в рационах стельных коров, незначительно снижается продолжительность беременности животных – на 1,29 и 2,14 дня, возрастает удой скорректированного молока 4%-ной жирности на 3,15 и 0,85 %, улучшается рост и развитие телят в профилакторный период на 3,93 и 4,52 %, переваримость органического вещества в целом – на 1,43 и 1,67 %, проявляется более умеренное содержание гемоглобина, числа эритроцитов и лейкоцитов, билирубина общего, увеличивается прибыль от продажи молока базисной жирности (3,6 %) в среднем на 1 голову на 111 руб., или на 0,59 %. Дальнейшее повышение уровня вышеназванных факторов не сопровождалось последующим ростом продуктивных качеств молочных коров.

Литература

- 1. Кормление сельскохозяйственных животных / Г. А. Богданов [и др.]. 2-е изд., перераб. и доп. М. : Агропромиздат, 1990. 624 с.
- 2. Нормы и рационы кормления сельскохозяйственных животных : справ. пособие / под ред. А. П. Калашникова [и др.]. 3-е изд., перераб. и доп. M., 2003. 456 с.
- 3. Слесарев, И. К. Минеральное питание крупного рогатого скота / И. . Слесарев, А. С. Зеньков. М. : Ураджай, 1987. 64 с.
- 4. Лебедев, Н. И. Использование микродобавок для повышения продуктивности жвачных животных / Н. И. Лебедев. Л. : Агропромиздат, 1990. 96 с.
- 5. Кальницкий, Б. Д. Рекомендации по минеральному питанию телок, нетелей, коров / Б. Д. Кальницкий, С. Г. Кузнецов, О. В. Харитонова // Зоотехния. -1991. -№ 9. -С. 29-33.

- 6. Рекомендации по витаминно- минеральному питанию высокопродуктивного молочного скота / И. И. Горячев [и др.]. Мн., 1992. 32 с.
- 7. Топорова, Л. Теория и практика кормления высокопродуктивных коров в период лактации / Л. Топорова // Кормление с.-х. животных и кормопроизводство. 2007. № 9. С. 34-41.
- 8. Сафаров, М. Б. Влияние некоторых витаминов и микроэлементов на общий белок и белковые фракции сыворотки крови коров / М. Б. Сафаров, А. С. Сулаймонов // Фармакологические и токсикологические аспекты промышленного животноводства. М. : МВА. 1985. С. 57-58.
- 9. Кондрахин, И. П. Методы ветеринарной клинической лабораторной диагностики : справочник / И. П. Кондрахин М. : КолосС, 2004. 520 с.

(поступила 19.02.2010 г.)

УДК 636.084.414

В.П. СЛАВОВ

ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ МОДЕЛЬ СИСТЕМЫ КОНКУРЕНТОСПОСОБНОГО КОРМООБЕСПЕЧЕНИЯ ЖИВОТНОВОДСТВА

Житомирский национальный агроэкологический университет

В целях выполнения условий устойчивого развития кормопроизводства, как составляющей устойчивого развития сельских территорий, необходимо решить вопрос создания оптимальной структуры площадей кормовых культур, угодий и рационов животных с учетом природно-климатических условий конкретного хозяйства, региона. Только комплексный подход к решению вопросов организации производства кормов может обеспечить современные требования с учетом конкретных проблем экономико-экологической эффективности. Такой подход требует и соответствующей методологии оценки кормовых культур. Определение только экономической эффективности производства продукции не в полной мере отвечает требованиям его устойчивого развития. Наряду с экономической оценкой не менее важно определить и экологическую эффективность кормовых культур. То есть система кормопроизводства должна отвечать требованиям полноценности, стабильности, экономичности и экологичности [1]. Для реализации такого подхода особое значение приобретает применение современных методов и технических средств, всесторонний учет передовой отечественной практики, отраслевых и региональных особенностей производства и реализации продукции. Это положение предусматривает широкое использование методического арсенала. Но это не зна-