В.Ф. РАДЧИКОВ 1 , В.К. ГУРИН 1 , С.И. ПЕНТИЛЮК 2 , И.В. СУЧКОВА 3 , В.В. БУКАС 3

ЭФФЕКТИВНОСТЬ СКАРМЛИВАНИЯ КОМБИКОРМА КР-2 С СЕЛЕНИТОМ НАТРИЯ В РАЦИОНАХ БЫЧКОВ

¹РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

² Херсонский государственный аграрный университет (Украина) ³УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины»

Введение. Обеспечение потребностей жвачных животных, в частности молодняка крупного рогатого скота, в минеральных веществах характеризуется качественным составом кормов и наличием балансирующих добавок, с одной стороны, а с другой — зависимостью от уровня усвоения потребленных минеральных компонентов и интенсивностью течения обменных процессов [1, 2, 3, 4].

Одним из элементов, оказывающим влияние на увеличение скорости метаболизма в организме животных, является селен. Он регулирует скорость окислительно-восстановительных реакций, воздействует на активность фосфатаз и синтез АТФ, влияет на процессы тканевого дыхания и иммунобиологическую активность организма. Недостаток селена приводит к недостатку витамина E, нарушает синтез гемсодержащих ферментов, отвечает за ксенобиотическую функцию печени.

Количественный состав селена в организме влияет на запирающую функцию соматостатина, уровень снижения которого обеспечивает повышение синтеза желудочно-кишечным трактом секретина и соляной кислоты, способствующих интенсификации процесса усвоения питательных веществ и транспортировки их в клетки [3, 4, 5, 6].

Потребность в селене молодняка крупного рогатого скота при выращивании на мясо при балансировании рационов практически не учитывается. Однако при разработке норм для сельскохозяйственных животных в каком-либо минеральном веществе необходимо устанавливать не только его содержание в кормах и усвояемость организмом, но и взаимодействие с другими элементами, которые могут тормозить или ускорять усвоение друг друга. При интенсивном выращивании и откорме животных точная доза внесения селена в рационы не установлена и имеет ориентировочную направленность. Доза внесения этого элемента в рационы, по литературным данным, варьирует в диапазоне от 0,1 до 0,5 мг/кг сухого вещества рациона [6, 7, 8].

Целью работы стало определение нормы ввода и изучение эффективности использования селена в составе комбикорма KP-2 в рационах молодняка крупного рогатого скота при выращивании на мясо.

Материал и методика исследований. Исследования по оценке влияния различных доз селена на физиологическое состояние и продуктивность молодняка крупного рогатого скота проведены в ЗАО «Липовцы» Витебского района и в физиологическом корпусе РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству».

При выборе дозировок селена руководствовались данными, установленными на молочном скоте Надаринской М.А. [9].

С целью изучения эффективности использования различных доз селена и влияния их на обмен веществ и продуктивные качества молодняка крупного рогатого скота проведен научно-хозяйственный и физиологический опыты, а также производственная проверка в соответствии с методиками А.И.Овсянникова [10], П.И. Викторова и В.К. Менькина [11].

Селенит натрия вводили в состав премикса ПКР-2, включаемый в комбикорм КР-2, обеспечивающие содержание селена в количествах 0,1 мг, 0,2 и 0,3 мг на 1 кг сухого вещества рациона.

Подопытные группы формировались согласно методике исследований по схеме, представленной в таблице 1.

Таблица 1 – Схема опытов

тиолици т					
Группы	Количе-	Живая	Продол-	Особенности	
	ство, го-	масса в	житель-	кормления	
	ЛОВ	начале	ность		
		опыта,	опыта,		
		КГ	дн.		
I контроль-	18	89,5	60	Основной рацион	
ная				(ОР): комбикорм КР-	
				2, сенаж, сено	
II опытная	18	91,3	60	ОР + 0,1 мг селена	
				на 1 кг сухого веще-	
				ства рациона (СВ)	
Ш опытная	18	90,2	60	ОР + 0,2 мг селена	
				на 1 кг СВ рациона	
IV опытная	18	91,4	60	ОР + 0,3 мг селена	
				на 1 кг СВ рациона	

Научно-хозяйственный опыт проведен на бычках начальной живой массой 89,5-91,4 кг в течение 60 дней. Группы формировались по принципу пар-аналогов с учетом возраста и живой массы. При прове-

дении опыта условия содержания были одинаковыми: кормление двукратное, поение из автопоилок, содержание беспривязное.

В процессе научно-хозяйственного опыта изучались: поедаемость кормов – путем проведения контрольных кормлений 1 раз в 10 дней в два смежных дня; гематологические показатели – путем взятия крови, спустя 2,5-3 часа после утреннего кормления и ее анализа; интенсивность роста бычков – путем индивидуального взвешивания животных в начале и конце опыта; затраты питательных веществ на единицу прироста живой массы; экономические показатели выращивания молодняка крупного рогатого скота.

В физиологическом опыте изучали: потребление кормов – путем ежедневного взвешивания заданных кормов и их остатков; процессы рубцового пищеварения – путем взятия и анализа содержимого рубца; гематологические показатели – путем взятия и анализа крови; переваримость и использование питательных и минеральных веществ по разнице между их количеством, поступившим с кормом и выделенным с продуктами обмена.

Содержимое рубца брали через фистулу, спустя 2-2,5 часа после утреннего кормления. В рубцовой жидкости определяли: рН — электропотенциометром марки рН-340; общий азот — по Къельдалю; общее количество летучих жирных кислот (ЛЖК) — в аппарате Маркгамма с последующим титрованием O,1N раствором NаOH. Отгонку, полученную при дистилляции 5 мл рубцовой жидкости, выпаривали на водяной бане при температуре 100°С; общее количество инфузорий — в камере Горяева при разведении формалином 1:4; аммиак — микродиффузным методом в чашках Конвея.

Кровь для исследований брали из яремной вены, спустя 2,5-3,0 часа после утреннего кормления.

В цельной крови определяли эритроциты и гемоглобин – фотоколориметрически по методу Воробьева.

В сыворотке крови определяли: общий белок – рефрактометрически; резервную щелочность – по Раевскому; мочевину – набором реактивов диацетилмонооксимным методом; глюкозу – ортотолуидиновым методом; кальций – комплексометрическим титрованием; неорганический фосфор – по Бриггсу; каротин – по Кар-Прайсу в модификации Юдкина; витамин А – по Бессею в модификации Анисимовой А.А.; селен в кормах и крови определяли на атомном абсорбционном спектрофотометре.

В кормах определяли: массовую долю сухого вещества – по ГОСТ 13496.3-92; массовую долю сырого протеина – по ГОСТ 13496.4-93 п.2; массовую долю сырого жира – по ГОСТ 13496.15-97; массовую долю сырой золы – по ГОСТ 26226-95 п.1; массовую долю сырой клетчатки – по ГОСТ 13496.2-91; массовую долю кальция – по ГОСТ

26570-95; массовую долю фосфора – по ГОСТ 26657-97.

Для подтверждения результатов научно-хозяйственного опыта проведена производственная проверка.

Результаты исследований и их обсуждение. При проведении исследований оптимальный уровень микроэлементов и витаминов для всех групп животных создавался за счет использования премикса ПКР-2 с включением разных доз селена, которыми обогащали используемый комбикорм КР-2 (таблица 2).

Таблица 2 – Состав комбикормов (в расчете на 1 кг)

Показатели	Стандартный	Опытный	
Кормовые единицы	1,1	1,1	
Обменная энергия, МДж	10,6	10,6	
Сухое вещество, г	859	859	
Сырой протеин, г	147	147	
Сырой жир, г	22	22	
Сырая клетчатка, г	58	58	
Крахмал, г	258	258	
Сахар, г	18	18	
Кальций, г	7,3	7,3	
Фосфор, г	4,5	4,5	
Магний, г	1,7	1,7	
Калий, г	7,1	7,1	
Сера, г	2,2	2,2	
Железо, мг	81	81	
Медь, мг	12,0	12,0	
Цинк, мг	62,0	62,0	
Марганец, мг	83,0	83,0	
Кобальт, мг	1,2	1,2	
Йод, мг	0,5	0,5	
Селен, мг	0,17	0,33/0,60/0,93	

Изучение поедаемости кормов в научно-хозяйственном опыте показало, что использование в составе рационов бычков опытного комбикорма с включением селеносодержащей добавки оказало определенное влияние на потребление корма (таблица 3).

В научно-хозяйственном опыте различия в потреблении кормов заключалось в большем поедании сенажа бычками II, III и IV опытных групп на 3,1%, 6,2 и 4,6%, соответственно.

Изучение процессов рубцового пищеварения показало, что реакция среды содержимого рубца (рН) находилась практически на одном уровне у животных всех групп с колебаниями в пределах 6,71-7,20.

Таблица 3 – Состав и питательность рационов (по фактически съеден-

ным кормам)

Поморожани	Группы					
Показатели	I	II	III	IV		
Сено злаковое, кг	0,4	0,4	0,4	0,4		
Сенаж злаковый, кг	6,5	6,7	6,9	6,8		
Комбикорм КР-2, кг	1,5	1,5	1,5	1,5		
В рационе содержится:						
кормовых единиц	4,0	4,05	4,1	4,1		
обменной энергии, МДж	46,0	46,8	47,6	47,2		
сухого вещества, кг	4,5	4,6	4,6	4,6		
сырого протеина, г	610	618	626	622		
сырой клетчатки, г	791	829	850	840		
сахара, г	380	388	393	391		
сырого жира, г	124	129	131	130		
кальция, г	30	31	32	32		
фосфора, г	17	17	17	17		
магния, г	8	9	10	9		
калия, г	80	84	86	85		
серы, г	8	8	8	8		
железа, мг	299	318	337	328		
меди, мг	31	31	32	32		
цинка, мг	152	155	157	156		
марганца, мг	319	333	338	336		
йода, мг	2,5	2,5	2,6	2,5		
кобальта, мг	2,2	2,2	2,2	2,2		
селена, мг	0,3	0,5	0,9	1,4		
каротина, мг	212	220	226	223		

В рубцовом содержимом бычков, потреблявших в составе рациона селен в дозе 0,1 мг, 0,2 и 0,3 мг на 1 кг сухого вещества рациона, отмечено увеличение содержания азота на 8,2 %, 24 и 10,5 %.

Обогащение комбикорма KP-2 селенитом натрия способствовало снижению количества аммиака в рубце опытных групп на 9,3-11,8 %, что свидетельствует о снижении расщепления протеина и улучшении его использования микроорганизма для синтеза белка своего тела, причем, в III группе различия оказались достоверными (P<0,05).

Повышение уровня ЛЖК в рубцовой жидкости животных опытных групп свидетельствует о более интенсивном течении гидролиза углеводов кормов под влиянием селеносодержащей добавки.

В исследованиях установлено, что в физиологическом опыте наилучшей переваримостью практически всех питательных веществ отли-

чались животные, получавшие с комбикормом KP-2 селен в дозе 0,2 мг на 1 килограмм сухого вещества рациона. Так, использование препарата в упомянутой дозе позволило повысить переваримость сухого вещества на 7,5 %, органического вещества — на 6,4, протеина — на 6,3, жира — на 5,5, клетчатки — на 6,1 %.

При использовании селена в дозах 0,1 и 0,3 мг на 1 килограмм сухого вещества рациона переваримость питательных веществ увеличивалась в меньшей степени.

Таким образом, наиболее эффективной дозой ввода селена в комбикорма КР-2 является 0,2 мг на 1 килограмм сухого вещества рациона, что обеспечивает лучшую переваримость питательных веществ.

Изучение баланса азота показало, что он был положительным у животных всех групп. Отмеченное увеличение поступления этого элемента с кормом и меньшее выделение с калом способствовало повышению обеспеченности молодняка III группы переваренным азотом на $8.3 \, \Gamma$ (P < 0.05) и на $3.0 \, u$ $3.3 \, \Gamma$ – бычков II и IV групп, соответственно.

Большее выделение азота с мочой молодняком опытных групп привело к уменьшению различий по отложению азота в теле до 1,1 г; 3,6 и 1,3 г, соответственно, во II, III и IV группах. Причем, разница между бычками III группы и контролем оказалась достоверной.

Полученные различия определенным образом сказались и на использовании азота организмом животных. Так, молодняк III группы использовал его на $31,5\,$ % от принятого, что на $3,3\,$ % лучше, чем в контрольной группе (P<0,05). Бычки II и IV групп лучше использовали азот от принятого на $0,6\,$ и $0,3\,$ %, соответственно (P>0,05).

Для изучения влияния разных доз селена на физиологическое состояние животных были изучены гематологические показатели.

Исследованиями установлено, что селенит натрия, вводимый в комбикорм опытного молодняка, не оказывал значительного влияния на морфо-биохимические показатели крови. Все они находились в пределах физиологических норм. Вместе с тем, установлены определенные межгрупповые различия по некоторым из них. Так, в крови наиболее интенсивно растущих телят, получавших селен в дозе 0,2 мг на 1 килограмм сухого вещества рациона в физиологическом опыте, отмечено повышение содержания белка на 7,8 %, чем в контрольной группе (Р<0,05). В крови животных, получавших 0,1 мг селена на 1 килограмм сухого вещества рациона, выявлено повышение концентрации эритроцитов относительно молодняка I группы на 3,5 %.

Введение в рацион бычков селеносодержащей добавки способствовало снижению уровня мочевины в крови опытных животных на 7,2-12,5 %, причем разница в III группе более существенная, чем в остальных группах.

В содержании остальных изучаемых компонентов крови какихлибо значительных межгрупповых различий не обнаружено.

Скармливание 0,2 мг селена на 1 кг сухого вещества рациона позволило получить среднесуточные приросты живой массы животных 943 г, или на 10,9 % (P<0,01) выше, чем в контроле.

Снижение дозы добавки до 0,1 мг на 1 килограмм сухого вещества рациона оказало меньшее ростостимулирующее действие на животных. Превосходство опытных животных над контрольными составило 0.6 %.

Несколько большее влияние на энергию роста животных оказало повышение дозировки селена до 0,3 мг на 1 килограмм сухого вещества рациона. В данном случае межгрупповые различия оказались на уровне 0,8 %, соответственно.

Более высокие темпы роста опытного молодняка позволили им более экономно использовать потребленные корма на производство продукции. Так, животные, получавшие комбикорма с селеном в дозе 0,2 мг на 1 кг сухого вещества рациона, затрачивали кормов меньше на 6,5%. При изменении дозировки до 0,1 и 0,3 мг на 1 килограмм сухого вещества данных показатель различий не имел.

Обработка экспериментальных данных, полученных в научно-хозяйственном опыте, свидетельствует о том, что применение изучаемых доз селена не всегда давало положительный результат.

Наиболее эффективной дозой оказалась 0,2 мг на 1 килограмм сухого вещества рациона. В данном случае получена продукция с самой низкой себестоимостью и наибольшим количеством дополнительной прибыли. Так, себестоимость 1 килограмма прироста уменьшилась на 11 %. При использовании иных доз исследуемой добавки себестоимость снижалась в меньшей степени.

Снижение себестоимости прироста живой массы у бычков, в состав рациона которых вводился селен из расчета 0,2 мг на 1 кг сухого вещества рациона, позволило получить дополнительно прибыль в расчете на 1 голову в год в 33,1 тыс. руб. (цены 2002 г.).

Заключение. 1. Установлено положительное влияние разных доз селена (0,1 мг, 0,2 и 0,3 мг на 1 кг сухого вещества рациона) на поедаемость кормов, переваримость и использование питательных веществ, биохимический состав крови, продуктивность животных. Наиболее эффективной является норма 0,2 мг селена на 1 кг сухого вещества рациона.

2. Использование оптимальной нормы селена в кормлении молодняка крупного рогатого скота способствует активизации микробиологических процессов в рубце, что приводит к снижению количества аммиака на 11,8 %, увеличению уровня общего азота на 24 %, повышению переваримости сухих, органических веществ, протеина, жира и

клетчатки на 5,5-7,5 %, улучшению использования азота на 3,3 % от принятого.

- 3. Включение селена в рационы бычков оказывает положительное влияние на окислительно-восстановительные процессы в организме бычков, о чем свидетельствует морфо-биохимический состав крови. При этом наблюдается повышение концентрации общего белка в сыворотке крови на 7,8 %, снижение содержания мочевины на 12,5 % (P<0.05).
- 4. Скармливание молодняку крупного рогатого скота комбикорма, обогащенного селенитом натрия в количестве, обеспечивающем 0,2 мг селена на 1 килограмм сухого вещества рациона, способствует повышению среднесуточных приростов бычков на 10,9 % (P<0,01).
- 5. Применение селена в дозе 0,2 мг на 1 килограмм сухого вещества рациона позволяет снизить себестоимость прироста на 11 % и получить дополнительную прибыль от повышения продуктивности и снижения себестоимости прироста в размере 33,1 тыс. руб. на голову в год (в ценах 2002 г.)

Литература

- 1. Абдуллаев, Ф. И. Некоторые биохимические аспекты действия селена на организм животных / Ф. И. Абдулаев // Успехи современной биологии. 1989. Т. 108. вып. 2(5) С. 279-288.
- 2. Боряев, Г. И. Биохимический иммунологический статус молодняка сельскохозяйственных животных и птицы и его коррекция препаратами селена : автореф. дисс. ... дра биол. наук / Боряев Г.И. Москва, 2000. 43 с.
- 3. Мадосян, Н. М. Влияние селена на использование ремонтными телками минеральных веществ рационов / Н. М. Мадосян, А. А. Кистина, Ю. Н. Прытков // Фундаментальные и прикладные проблемы повышения продуктивности сельскохозяйственных животных. Саранск, 1998. С. 97.
- 4. Касумов, С. Н. Биологическое значение селена для жвачных животных / С. Н. Касумов. М., 1979. 49 с.
- 5. Селен в биосфере / А. Ф. Блинохватов [и др.] ; ПГСХА. Пенза : РИО ПГСХА, 2001.-270 с.
- 6. Давлетшин, Д. Ф. Применение препаратов селена при выращивании телят до шести месяцев / Д. Ф.Давлетшин, Т. А. Фатиров //Зоотехния. 2005. №6. С. 12-15.
- 7. Дьяченко, И. С. Селен в рационах высокопродуктивных коров / И. С. Дьяченко, В. Ф. Лысенко // Зоотехния. -1989.- С. 12-16.
- 8. Ермаков, В. В. Биологическое значение селена / В. В. Ермаков, В. В. Ковалевский. Москва, 1974.-300 с.
- 9. Надаринская, М. А. Влияние разных уровней селена на продуктивность и гематологические показатели коров с удоем 6-7 тыс. кг за лактацию / М. А. Надаринская // Животноводство и ветеринарная медицина. -2004. -№ 1. -C. 86-88.
- 10. Овсянников, А. И. Основы опытного дела в животноводстве /А. И. Овсянников. М. : Колос, 1976. 304 с.
- 11. Викторов, П. И. Методика и организация зоотехнических опытов / П. И. Викторов, В. К. Менькин. М. : Агропромиздат, 1991. 112 с.

(поступила 24.02.2010 г.)