- 4. Агафонов Б.А. К вопросу интенсификации молочного скотоводства // Породы и породообразовательные процессы в животноводстве. К., 1989. С. 66-73.
- 5. Эрнст Л.К. Импульсно-циклический способ разведения по линиям / Л.К. Эрнст, В.Л. Петухов, А.И. Желтиков // Докл. РАСХН. 1996. № 1. С. 20-21.

УДК 637.5.04/07+636.2 (571.1)

ХИМИЧЕСКИЙ И АМИНОКИСЛОТНЫЙ СОСТАВ МЯСА КРУПНОГО РОГАТОГО СКОТА ЗАПАДНОЙ СИБИРИ

Н.Б. ЗАХАРОВ, кандидат сельскохозяйственных наук Новосибирский госагроуниверситет

Резюме. Биологическая полноценность говядины зависит от происхождения животных. В мясе симментальских бычков по сравнению с голштин х черно-пестрыми обнаружено больше незаменимых аминокислот: лизина, метионина, изолейцина и триптофана. Наиболее высокими биологическими и вкусовыми показателями отличается мясо и жир животных симментальской породы.

Ключевые слова: чистопородные и помесные бычки-кастраты, состав туши, качество мяса.

Введение. Главная ценность говядины определяется наличием в ней белков. Они являются основным материалом, из которого построена клетка, ткани и органы живого организма. С белками связаны основные процессы жизнедеятельности – пищеварение, рост и развитие, катализ и др. При окислении в организме 1 г белка выделяет 16,7 кДж энергии. Биологическая ценность мяса определяется по белковокачественному показателю (БКП). Величина его не является постоянной и зависит от возраста и происхождения животных [1, 6].

Биологически полноценное мясо содержит 10-14 % жира и 20-21 % белка, что приводит к уравниванию соотношения жира и белка по их калорийной ценности. Энергетическая ценность говядины должна составлять 4,3-5,4 МДж, причем около 50 % за счет белка. Такое мясо можно получать от интенсивно выращенного и откормленного молодняка 15-20 – месячного возраста живой массой 440-560 кг [7-9].

Была поставлена цель — изучить химический и аминокислотный состав мяса бычков разного происхождения.

Материал и методика исследований. Экспериментальная часть работы проведена в крестьянских (фермерских) хозяйствах Ташта-гольского района Кемеровской области в период 2000-2002 гг. Для проведения опыта по принципу аналогов были сформированы две подопытные группы бычков по 12 голов в каждой: І группа — голштин х черно-пестрые (3/4 кровности по голштинам), ІІ группа — симмен-

тальские.

Животные находились в одинаковых условиях кормления и содержания. Зимой – в легких неотапливаемых помещениях, летом – на горных пастбищах. Контрольные убои проведены в возрасте 16,5; 18 и 20 мес. по методикам ВИЖ, ВНИИМП (1965), СибНИПТИЖ (2001).

Изучение развития мышечной ткани проведено на бычках-кастратах черно-пестрой, герефордской, симментальской пород и герефорд х симментальских помесях в возрасте 16,5 и 18 мес., выращенных в ГУПЗ ОПХ «Садовское» Краснозерского района Новосибирской области. За период опыта (с 6 до 18 мес.) расход кормов в среднем на 1 голову составил 2093 корм. ед. и 213 кг переваримого протеина. Живая масса подопытных бычков в возрасте 1,5 года находилась в пределах от 428,6 кг (черно-пестрые) до 462, 1 кг (симментальские).

Химический состав мяса определяли по общепринятым методикам, аминокислоты — на инфракрасном спектрофотометре и анализаторе AAA-881.

Материалы обработаны по алгоритмам и программам В.Н. Дементьева (10).

Результаты эксперимента и их обсуждение. Живая масса симментальских бычков Сибири и голштин х черно-пестрых сверстников в возрасте 20 мес. при затрате кормов 3246-3270 корм. ед. составляла 426,9 и 458,6 кг. Подопытные бычки в возрасте 20 мес. были высшей упитанности, а их туши отнесены к первой категории. Симменталы превосходили голштинских помесей по предубойной живой массе на 7,2 % (P < 0,05), по убойному выходу – на 10,4 % (P < 0,01). Масса туши у животных I группы по сравнению со II была на 10,1 % больше и составила 231,9 кг.

Количество жира и белка в средней пробе туши и длиннейшей мышце спины симменталов было на 7,9-8,3 % больше, чем у голштин х черно-пестрых сверстников (табл. 1).

Таблица 1 Химический состав (%) и энергетическая ценность (МДж) говядины и жира туш

Группа	Вода	Жир	Белок	Зола	Энергетическая	
- F)		p		0.000	ценность 1 кг	
Средняя проба туши						
I	68,7	12,85	17,44	1,01	8,0	
II	67,46	13,92	17,63	0,99	8,4	
Длиннейшая мышца спины						
I	74,44	2,29	22,25	1,02	4,7	
II	73,79	2,47	22,82	0,92	4,9	
Жир туши						
I	26,29	66,43	7,04	0,21	27,1	
II	25,33	67,25	7,25	0,17	27,4	

Чтобы оценить развитие мышечной ткани, мы провели исследования химического состава длиннейшей мышцы спины, предостного, полуперепончатого мускулов и филейки у подопытного молодняка. Поводом к изучению указанных мышц послужило то, что по их развитию вполне можно судить о качественном составе туши.

Содержание жира и белка в указанных мышцах находились в пределах 1,76-4,06; 21,65-24,14 %. Количество жира и белка в среднем по трем и четырем мышцам составила 2,04-2,26; 22,61-22,49, соответственно (табл. 2). Наибольшее содержание жира в мясе длиннейшей мышцы спины обнаружено у герефордских (4,06 %) и герефорд х симментальских (3,95 %) бычков, что выше, чем у симментальских на 1,77-1,88 %, у черно-пестрых — на 2,04-2,15 %, соответственно. Показатель белка в этой же мышце был самым низким (23,31 %).

Таблица 2

				т и от пъци 2		
Химический состав мышц						
Мышца	Вода	Жир	Белок	Зола		
Черно-пестрая						
Предостная	$73,53 \pm 0,65$	$2,42 \pm 0,19$	$23,18 \pm 0,63$	0.86 ± 0.05		
Длиннейшая	$73,59 \pm 0,31$	$1,91 \pm 0,16$	$23,31 \pm 0,11$	0.85 ± 0.02		
Полуперепончатая	$74,28 \pm 0,28$	$1,81 \pm 0,27$	$23,08 \pm 0,12$	0.83 ± 0.025		
Филейка	$74,25 \pm 0,07$	$2,77 \pm 0,21$	$21,98 \pm 0,28$	$1,07 \pm 0,09$		
Симментальская						
Предостная	$76,06 \pm 0,61$	$1,34 \pm 0,24$	$21,65 \pm 0,27$	0.95 ± 0.03		
Длиннейшая	$73,16 \pm 0,22$	$2,18 \pm 0,14$	$23,69 \pm 0,42$	$1,07 \pm 0,02$		
Полуперепончатая	$74,93 \pm 0,49$	$2,0 \pm 0,05$	$22,19 \pm 0,46$	0.88 ± 0.02		
Филейка	$75,13 \pm 0,21$	$1,76 \pm 0,15$	$22,09 \pm 0,35$	$1,01 \pm 0,14$		
Герефордская						
Предостная	$74,18 \pm 0,50$	$2,99 \pm 0,25$	$22,06 \pm 0,44$	$0,77 \pm 0,02$		
Длиннейшая	$71,42 \pm 0,31$	$4,06 \pm 0,24$	$23,54 \pm 0,41$	0.99 ± 0.18		
Полуперепончатая	$73,09 \pm 0,44$	$1,78 \pm 0,22$	$24,14 \pm 0,22$	$0,99 \pm 0,02$		
Филейка	$72,18 \pm 1,18$	$3,49 \pm 0,49$	$22,63 \pm 0,74$	$1,01 \pm 0,06$		
Герефорд х симментальская						
Предостная	$73,53 \pm 0,65$	$2,42 \pm 0,19$	$23,18 \pm 0,63$	0.86 ± 0.05		
Длиннейшая	$71,48 \pm 0,23$	$3,95 \pm 0,14$	$23,48 \pm 0,22$	$1,09 \pm 0,02$		
Полуперепончатая	$74,28 \pm 0,28$	1,81±0,27	$23,08 \pm 0,12$	0.83 ± 0.02		
Филейка	$73,287 \pm 0,47$	$3,06 \pm 0,58$	$22,35 \pm 0,45$	$1,05 \pm 0,15$		
В среднем по всем						
мышпам	74.31 ± 0.19	2.26 ± 0.11	22.49 ± 0.15	0.936 ± 0.02		

В туше симментальских бычков по сравнению с голштинскими помесями найдено больше жира и белка. Энергетическая ценность мяса симменталов составила 8,4, голштин х черно-пестрых – 8,0 МДж, соответственно. Мясо симменталов по сравнению с голштин х чернопестрым крупным рогатым скотом содержит больше незаменимых аминокислот: лизина – на 17,1% (P<0,01), метионина – на 10,2 (P<0,01), изолейцина – на 6,1 (P<0,01), триптофана – на 5,3 % (P<0,01).

Для оценки биологической полноценности говядины определяли белковый качественный показатель (БКП), который в обеих группах был практически одинаковым и находился в пределах 6,18-6,2 (табл. 3). Однако количество триптофана в мясе симменталов по сравнению с голштин х черно-пестрыми бычками было больше на 5,3% (P < 0,01).

Аминокислотный состав длиннейшей мышцы спины, %

Таблица 3

Таблица 4

Аминокислота	Группа			
Аминокислота	голштин х черно-пестрая	симментальская		
Лизин	$5,80 \pm 0,17$	$6,79 \pm 0,03$		
Гистидин	$4,30 \pm 0,06$	$4,24 \pm 0,02$		
Аргинин	$6,48 \pm 0,09$	$6,56 \pm 0,03$		
Аспарагиновая кислота	$8,53 \pm 0,09$	$8,39 \pm 0,10$		
Треорин	$3,86 \pm 0,04$	$3,81\pm0,04$		
Серин	$3,28 \pm 0,05$	$3,31 \pm 0,03$		
Глутаминовая кислота	$15,77 \pm 0,09$	$15,46 \pm 0,06$		
Пролин	$1,91\pm0,09$	$1,85 \pm 0,05$		
Глицин	$4,62 \pm 0,10$	$4,67 \pm 0,06$		
Аланин	$5,09 \pm 0,03$	$5,11 \pm 0,02$		
Цистин	$1,89 \pm 0,05$	$1,82 \pm 0,05$		
Валин	$3,50 \pm 0,04$	$3,52 \pm 0.03$		
Метионин	$1,67 \pm 0,02$	$1,84 \pm 0,01$		
Изолейцин	$2,26 \pm 0,01$	$2,39 \pm 0,01$		
Лейцин	$5,14 \pm 0,05$	$5,23 \pm 0,04$		
Тирозин	$2,35 \pm 0,03$	$2,51 \pm 0,01$		
Фениламин	$3,09 \pm 0,02$	$3,11 \pm 0,02$		
Сумма	$79,54 \pm 0,34$	$80,61 \pm 0,36$		
Триптофан, мг/%	$442,00 \pm 3,79$	$465,33 \pm 2,91$		
Оксипролин, мг/%	$71,67 \pm 1,76$	$75,00 \pm 1,73$		
БКП	$6,18 \pm 0,17$	$6,21\pm0,10$		

Говядина подопытного молодняка имела высокие вкусовые качества (4,35-4,65) и аромат (4,55-4,6), но была недостаточно нежная (4,05-4,25) и сочная (4,3). Общий средний балл за мясо симменталов составил 4,46, что на 3,5 % выше, чем у голштин х черно-пестрых аналогов (табл. 4).

Результаты дегустации вареного мяса (баллы)

т езультаты дегустации вареного миса (осылы)					
Показатель	Группа животных				
Показатель	голштин х черно-пестрая	симментальская			
Внешний вид	$4,30 \pm 0,13$	$4,50 \pm 0,17$			
Аромат	$4,55 \pm 0,14$	$4,60 \pm 0,15$			
Вкус	$4,35 \pm 0,13$	$4,65 \pm 0,15$			
Консистенция	$4,05 \pm 0,16$	$4,25 \pm 0,15$			
Сочность	$4,30 \pm 0,20$	$4,30 \pm 0,21$			
Общий балл	$4,31 \pm 0,10$	$4,46 \pm 0,11$			

- **Выводы.** 1. Качество мяса крупного рогатого скота зависит от происхождения животного и топографии мышечной ткани.
- 2. Мясо, полученное от симментальских быков, содержит больше жира, белка, незаменимых аминокислот и имеет более высокую пищевую ценность и калорийность по сравнению с мясом голштин х чернопестрых сверстников.
- 3. Белковый качественный показатель у симментальских и голштин х черно-пестрых бычков был одинаковым и составил 6,2.

Литература

- 1. Солошенко В.А. Концепция развития мясного скотоводства в Сибири // Зоотехния. 2001. № 11. С. 10-13.
- 2. Захаров Н.Б., Незавитин А.Г., Макута В.Н. Качество говядины голштинизированного и симментализированного скота Кузбасса // Сибирский вестник с.-х. науки. -2003. -№ 1. C. 41-42.
- 3. Заяс Ю.Ф. Качество мяса и мясопродуктов. М.: Легкая и пищевая промышленность, 1981.-480 с.
- 4. Кобцев М.Ф. Мясная продуктивность черно-пестрого скота в зависимости от возраста и породности // Увеличение производства и улучшение качества продукции животноводства: Сб. науч. тр. / Новосибирский с.-х. институт. Новосибирск, 1975. Т. 87. С. 3-17.
- 5. Оценка мясной продуктивности крупного рогатого скота: [Рек.] / Под ред. Н.В. Борисова, Б.А. Скуковского, Н.Б. Захарова и др. Новосибирск, 2001. 156 с.
- 6. Эрнст Л.К., Заверюха А.Х., Мазуровский Л.З. Создание мясного типа симментальского скота // Зоотехния. 1993. № 8. С. 2-7.
- 7. Захаров Н.Б. Качество мяса крупного рогатого скота Западной Сибири // Сибирский вестник с.-х. науки. -2002. -№ 4. C. 65-69.
- 8. Кобцев М.Ф., Захаров Н.Б., Иванова О.А. Мясная продуктивность крупного рогатого скота и технология производства говядины: [Лекция] / Новосиб. гос. аграр. ун-т. Новосибирск, 2004.-34 с.
- 9. Какую породу скота лучше разводить / Н.В. Борисов, Б.О. Инербаев, А.И. Рыков, В.Ф. Петров // Сельские новости. 2002. № 6. С. 14-16.
- 10. Дементьев В.Н., Каракулов А.В. Введение в компьютерную технологию: Учеб. пособие / Новосиб. гос. аграр. ун-т. Новосибирск, 2002. 97 с.

УДК 636.22.28.082.12

ВЛИЯНИЕ ГЕНОТИПА КАППА-КАЗЕИНА НА МОЛОЧНУЮ ПРОДУКТИВНОСТЬ КОРОВ ЧЕРНО-ПЕСТРОЙ ПОРОДЫ

Л.А. КАЛАШНИКОВА, доктор биологических наук Е.А. ДЕНИСЕНКО, кандидат биологических наук А.Ш. ТИНАЕВ, кандидат сельскохозяйственных наук Всероссийский НИИ племенного дела, Россия

Резюме. Проведено генотипирование популяции голштинизированного чернопестрого скота в Красноярском крае по гену каппа-казеина с помощью методов ДНК-