- 4. Ёрсков, Э. Р. Протеиновое питание жвачных животных / Ё. Р. Ерсков ; под редакцией В. И. Георгиевского. М. : Агропромиздат, 1985. 183 с.
- 5. Изучение пищеварения у жвачных : методические указания / Н. В. Курилов [и др.] ; Всерос. науч.-исслед. ин-т физиологии и биохимии питания с.-х. животных. Боровск, 1987.-96 с.
- 6. Гибадуллина, Ф. С. Повышение эффективности использования протеина в рационах лактирующих коров / Ф. С. Гибадуллина // Кормопроизводство. 2006. № 8. С. 30-31.
- 7. Долгов, И. А. Микрофауна рубца и ее роль в питании животных // Сельскохозяйственные животные: физиологические и биохимические параметры организма : справочное пособие / И. А. Долгов, С. И. Долгова ; под ред. В.Б. Решетов. Боровск, 2002. С. 50-71.
- 8. Иоффе, В. Б. Практика кормления молочного скота : пособие для зоотехников и заведующих ферм / В. Б. Иоффе. Молодечно : Победа, 2005. 164 с.
- 9. Коршунов, В. Н. Биосинтез микробного белка в рубце коров в зависимости от качества протеина / В. Н. Коршунов, Н. В. Курилов. М., 1985. 85 с.
- 10. Косолапов, В. Качество и эффективность кормов / В. Косолапов, А. Фицев, А. Гаганов // Животноводство России. -2010. № 11. -C. 50-52.
- 11. Овсянников, А. И. Основы опытного дела в животноводстве: учебное пособие / А. И. Овсянников. М.: Колос, 1976. 304 с.
- 12. Нормы кормления крупного рогатого скота: справочник / Н. А. Попков [и др.]. Жодино: РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», 2011. 260 с.
- 13. Методы ветеринарной клинической лабораторной диагностики : справочник / И. П. Кондрахин [и др.]; под ред. И. П. Кондрахина, 2004. 520 с.

(поступила 11.03.2015 г.)

УДК 633.321:631.552.2

А.Г. ПОДОЛЯК, А.Ф. КАРПЕНКО, Т.В. ЛАСЬКО

ВЛИЯНИЕ СИСТЕМЫ УДОБРЕНИЙ НА ЗООТЕХНИЧЕСКОЕ КАЧЕСТВО КОРМОВ И МИГРАЦИЮ РАДИОНУКЛИДОВ

РНИУП «Институт радиологии»

На основании трёхлетних исследований установлено, что при залужении многолетними злаковыми травами сенокосов на низинных торфяно-болотных почвах с низким содержанием фосфора, калия и загрязнённых радионуклидами наиболее эффективно вносить минеральные удобрения в дозах: азотные – 60 кг/га д.в., фосфорные – 60-90 кг/га д.в., калийные – 180-240 кг д.в. и медные – 200 г/га. При данной системе удобрений получена наиболее высокая урожайность многолетних трав, наименьшие параметры перехода радионуклидов в растения и оптимальные показатели зоотехнического качества кормов.

Ключевые слова: торфяно-болотные почвы, удобрения, радионуклиды, питательность кормов.

A.G. PODOLYAK, A.F. KARPENKO, T.V. LASKO

EFFECT OF FERTILIZERS SYSTEM ON ZOOTECHNICAL QUALITY OF FEEDS AND RADIONUCLIDE MIGRATION

Research Institute of Radiology

Three-year experiment helped to determine that most effective rates of mineral fertilizers applied when grassing hayfields with perennial grasses on lowland peat-bog soils low in phosphorus and potassium and contaminated with radionuclides. According to the study results, the most effective is application of 60 kg/ha of nitrogen fertilizers, 60-90 kg/ha of phosphorus fertilizers, 180-240 kg of potash and 200 g/ha of copper. These rates have proved to give the highest yields of perennial grasses, the lowest levels of radionuclide transfer from soil to plants and the best zootechnical quality of forages.

Key words: peat-bog soils, fertilizers, radionuclides, feed nutrition.

Введение. В получении максимальной продуктивности животных большое значение имеет питательная ценность используемых кормов. О ней можно судить на основании данных о содержании в корме сухого вещества и его химическом составе. Низкое качество травяных кормов является важным сдерживающим фактором повышения продуктивности отрасли животноводства. Поэтому в зоне радиоактивного загрязнения актуальной является разработка эффективных агрохимических мер, учитывающих особенности почв и их загрязнение, для получения нормативно чистых питательных кормов [1, 2, 3].

Торфяные почвы различных типов и с разной мощностью торфа в настоящее время занимают 754 432 га, из них на сенокосы и пастбища приходится 518 064 га, или 25,9 % общей площади сенокосов и пастбищ. Под пашней находится 236 368 га торфяно-болотных почв, или 5,2 % от общей площади пашни. В результате катастрофы на Чернобыльской АЭС более 500 тыс. га торфяно-болотных почв подвержено загрязнению радионуклидами [4, 5, 6].

По результатам последнего тура агрохимического и радиологического обследования отмечено снижение содержания в почвах фосфора и калия, особенно на сенокосах и пастбищах. Низко- и слабообеспеченные подвижным калием почвы (<400 мг/кг) занимают: в Гомельской области – 71,5 %, Брестской – 72,4 % и Могилёвской – 86,1 % от общей площади всех сенокосов и пастбищ. Однако основная доля растениеводческой продукции и кормов, не отвечающих требованиям РДУ, производится именно на почвах данного типа [7].

Анализ результатов экспериментальных исследований свидетельствует о том, что наибольший радиоэкологический эффект от применения защитных мероприятий на торфяно-болотных почвах даёт внесение повышенных доз калийных удобрений на фоне сбалансированного азотного и фосфорного питания, с применением микроудобрений

и известкования [8].

Цель исследований заключалась в подборе системы применения удобрений, способствующей максимальной продуктивности трав и их зоотехническому качеству, а также минимальному накоплению радионуклидов.

Материал и методика исследований. В СПК «Оборона» Добрушского района Гомельской области на протяжении 2008-2010 годов проводился полевой эксперимент на торфяно-болотной маломощной почве для разработки защитных мероприятий. Почва опытного участка низинная торфяно-болотная маломощная (0,8-1,0 м), подстилаемая песком. Торф древесно-осоковый с зольностью 17,6 %, плотность загрязнения почвы 137 Cs – $369~\text{кБк/m}^2$ (10 Ku/км²), 90 Sr – $14,0~\text{Бк/m}^2$ (0,38 Ku/км²). Исходные средние агрохимические показатели почвы: $pH_{\text{KCl}} - 5,38,~\text{K}_2\text{O} - 300~\text{мг/кг},~P_2\text{O}_5 - 202~\text{мг/кг},~\text{CaO} - 1349,~\text{MgO} - 524~\text{мг/кг}$ почвы, сумма поглощённых оснований – 93,7~ммоль/100 г почвы, содержание меди – 7,4~мг/кг почвы. Общая площадь делянки – $18~\text{m}^2$, учётная – $10~\text{m}^2$. Состав травосмеси: кострец безостый – 14~кг/га, овсяница луговая и тимофеевка луговая – по 6~кг/га.

Предшественник — редька масличная. В соответствии со схемой полевого эксперимента проводилось изучение накопления $^{137}\mathrm{Cs}$ и $^{90}\mathrm{Sr}$ в контрольном варианте без удобрений, в варианте с удобрениями в дозе $N_{30}P_{60}K_{120}$ (минимальные дозы удобрений), в вариантах на фоне $N_{30}P_{60}K_{120}$ с медными удобрениями и различными дозами и соотношениями минеральных удобрений. В 20 вариантах (4 повторности) испытаны дозы азота 30, 60, 90 кг/га, дозы фосфора — 60 и 90 кг/га, калия — 120, 180 и 240 кг/га в различных сочетаниях в двух блоках — с известкованием 3 т/га $\mathrm{CaCO_3}$ и без известкования. Подготовка проб почвы и растительных образцов к анализу производилась по общепринятым метоликам.

Результаты эксперимента и их обсуждение. На основании проведённых полевых опытов было установлено, что внесение удобрений в дозах $N_{30}P_{60}K_{120}+Cu_{200r/ra}$ привело к росту урожая в 2,4 раза (прибавка составила 53,3 ц/га) (таблица 1).

Дополнительное внесение азота в дозе 30 кг/га д.в. способствовало повышению урожая на 12,3 ц/га. Увеличение дозы азота ещё на 30 кг/га д.в. на фоне $N_{60}P_{60}K_{120}+Cu_{200r/ra}$ оказало незначительное влияние на продуктивность трав, прибавка составила 4,5 ц/га. Следовательно, повышение дозы азота выше 60 кг/га д.в. нецелесообразно, так как не рентабельно. Применение высоких доз фосфорных удобрений нерентабельно в связи с низкой прибавкой урожая и невысокой её стоимостью, которая не окупает затраты на приобретение удобрений.

Таблица 1 – Влияние системы применения минеральных удобрений на урожайность сена многолетней злаковой травосмеси на торфяной почве

Доза				Сред-	Прибавка,
удобрений	2008 г.	2009 г.	2010 г.	нее за 3	ц/га
				года	
Без удобрений	49,2	45,2	17,9	37,4	-
$N_{30}P_{60}K_{120}$	86,3	95,4	75,9	85,9	48,5
$N_{30}P_{60}K_{120}+M/9$	88,4	104,8	78,8	90,7	53,3
$N_{60}P_{60}K_{120}+M/9$	100,8	122,8	85,3	103,0	65,6
$N_{90}P_{60}K_{120}+M/9$	103,3	128,2	91,1	107,5	70,1
$N_{60}P_{90}K_{180}+M/9$	118,5	118,0	100,5	112,3	74,9
$N_{60}P_{90}K_{240}+M/9$	117,7	131,6	106,2	118,5	81,1
HCP _{0,05}	5,6	5,0	3,3	4,6	

Прибавка урожая от доз калийных удобрений в дозах 60 и 120 кг/га д.в. на фоне $N_{30}P_{60}K_{120}$ +м/э составила 74,9 и 81,1 ц/га соответственно. Более высокие дозы калийных удобрений увеличивают непроизводственные потери калия, повышают содержание калия в травах, происходит существенный сдвиг соотношения в кормах двухвалентных и одновалентных катионов, что заметно ухудшает их качественные показатели. Как показали исследования, на торфяно-болотных почвах оптимальным соотношением между фосфором и калием в питательном растворе для многолетних трав является от 1:1,5 до 1:2

На торфяных почвах растения часто ощущают недостаток меди, особенно её подвижных форм, поэтому хорошие результаты даёт внесение медных удобрений в виде некорневых подкормок. При правильном применении микроудобрений с учётом их содержания в почве урожайность сена многолетних трав при использовании меди в дозе 200 г/га повышается, прибавка урожая составила 5,7 ц/га.

Снижение урожайности сена злаковых трав в 2010 году обусловлено неблагоприятными засушливыми погодными условиями, которые особенно сказались на продуктивности второго укоса.

В настоящее время считается целесообразным на сенокоснопастбищных землях на торфяных почвах, загрязнённых 137 Cs и 90 Sr, применять азотные удобрения в составе полного минерального удобрения со значительным преобладанием калия. Установлено, что с увеличением дозы азотных удобрений от 30 до 60 и 90 кг/га д.в. на фоне фосфорно-калийных в сене накапливается большее количество нитратов и усиливается накопление 137 Cs в 1,2-1,4 раза (таблица 2).

Таблица 2 – Влияние минеральных удобрений на поступление $^{137}{\rm Cs}$ и $^{90}{\rm Sr}$ в сено злаковой травосмеси на торфяной маломощной почве

(среднее за 3 года)

(epeginee sur s rog				
Вариант	Кп ¹³⁷ Сs Бк/кг:кБк/м	Кратность снижения ¹³⁷ Cs, раз	Кπ ⁹⁰ Sr Бк/кг:кБк/м ²	Кратность снижения ⁹⁰ Sr, раз
$N_{30}P_{60}K_{120}$	3,7±0,3	-	2,6±0,3	-
$N_{30}P_{60}K_{120}+M/9$	$3,4\pm0,2$	1,1	$2,5\pm0,2$	1,1
$N_{60}P_{60}K_{120} + M/9$	$4,5\pm0,4$	0,8	$2,9\pm0,1$	0,9
$N_{90}P_{60}K_{120} + M/3$	$5,1\pm0,4$	0,7	$3,1\pm0,2$	0,8
$N_{60}P_{90}K_{180} + M/3$	2,1±0,3	1,8	$2,0\pm0,1$	1,3
$N_{60}P_{90}K_{240} + M/9$	$1,6\pm0,1$	2,2	$1,8\pm0,1$	1,4
$N_{30}P_{60}K_{120}+M/9$				
+CaCO ₃	$3,1\pm0,3$	1,2	$2,4\pm0,2$	1,1

^{*} Кп-коэффициент перехода

Внесение фосфорных удобрений в дозе 90 кг/га д.в. под злаковую травосмесь на торфяной почве снижает величину накопления ¹³⁷Сs в 1,2 и ⁹⁰Sr в 1,1 раза. Учитывая дефицит фосфорных удобрений и их высокую себестоимость, рекомендуется на загрязнённых торфяных землях обеспечить внесение минимума фосфорных удобрений, необходимого для сбалансированного питания травостоев с учётом содержания подвижных форм фосфора в почве.

С повышением количества калия в почве или питательной среде снижается поступление 137 Cs в растения. Это связано с антагонистическим характером отношения цезия и калия в почвенном растворе и позитивным влиянием последнего на урожай, особенно на низкообеспеченных калием почвах. На слабообеспеченной калием (300 мг/кг почвы) торфяной почве с сеяной злаковой травосмесью повышение доз калийных удобрений от 120 до 180 и 240 кг/га д.в. позволяет значительно снизить коэффициент перехода 137 Cs. Так, на фоне N_{60} P_{90} увеличение дозы калия от 120 до 180 кг/га д.в. Кп 137 Cs уменьшается в 1,7 раз, доведение калия до 240 кг/га д.в снижает переход в 2,2 раза. Снижение содержания 90 Sг незначительно — до 1,2 раза.

В зоне радиоактивного загрязнения торфяных почв применение микроудобрений приобретает особую значимость, так как основными формами микроудобрений являются сульфаты, катионы которых могут быть антагонистами радионуклидов стронция и цезия при поступлении их в растения. Применение сульфата меди в дозе 200 г/га в виде некорневой подкормки с многолетними злаковыми травами позволяет снизить Кп ¹³⁷Cs на 10 %, Кп ⁹⁰Sr уменьшился в 1,1 раза.

Проведение поддерживающего известкования в дозе 3 т/га $CaCO_3$ на фоне $N_{30}P_{60}K_{120}+м/9$ привело к незначительному снижению накоп-

ления 137 Cs в сене – в 1,2 раза, Кп 90 Sr снизился с 2,5 до 2,4.

Совместное внесение дополнительных доз азота (30 кг/га д.в.), фосфора (30 кг/га д.в.) и калия (60 и 90 кг/га д.в.) на фоне $N_{30}P_{60}K_{120}$ + м/э позволило снизить КП 90 Sr с 2,5 до 2,2 и 1,9 соответственно.

Анализ значений коэффициентов перехода ⁹⁰Sr за три года показал, что накопление радионуклида злаковыми травами в первый год пользования было выше, чем во второй и третий.

Питательность кормов оценивается согласно ГОСТ 4808-87, по которому содержание сырого протеина в сухом веществе злаковых трав должно составлять не менее 8-10 %, содержание клетчатки – не более 28-30 %, калия – 1,2-2,5 %, а отношение калия к сумме кальция и магния – 2,2-2,4. В вариантах эксперимента содержание сырого протеина колебалось от 9,5 до 14,7 %, что соответствовало стандарту (таблица 3).

Таблица 3 – Зоотехнические показатели сена многолетних злаковых трав (среднее за 2008-2010 гг.)

Вариант	Сырые						Нит-
	клет-	про-	К	Ca	Mg	<u>K</u> Ca+Mg	раты
	чатка	теин					мг/кг
	%						MII / KI
$N_{30}P_{60}K_{120}$	36,5	11,6	2,5	0,57	0,21	3,2	477
$N_{30}P_{60}K_{120}+M/3$	32,0	10,7	2,5	0,52	0,18	3,6	536
$N_{60}P_{90}K_{180}+M/3$	30,2	11,1	2,6	0,75	0,33	2,4	651
$N_{60}P_{90}K_{240}+M/9$	33,3	11,8	2,6	0,64	0,35	2,6	865

Наилучшие показатели зоотехнического качества сена отмечены в варианте $N_{60}P_{90}K_{180}$ +м/э, где содержание сырого протеина составило 10,3 %, сырой клетчатки – 30,1 % и обменной энергии – 0,65 к. ед. в 1 кг сухого вещества, а также содержание нитратов в корме находилось в пределах допустимого уровня (до 1000 мг/кг).

Содержание клетчатки в более 50 % вариантов опыта превышало оптимальные показатели, калий в сене находился в оптимальном диапазоне, соотношение К/(Ca+Mg) в большинстве вариантов отклонялось от рекомендуемого в сторону увеличения, показатели нитратов в сене находились в пределах допустимого уровня в кормах. Следовательно, содержание сырого протеина, сырой клетчатки и кормовых единиц в сене многолетних злаковых трав зависит от различных доз минеральных удобрений.

По мере повышения загрязнения почв радионуклидами потребность в калии увеличивается. Изучение содержания калия в многолетних травосмесях особенно важно на торфяных почвах, так как приме-

нение повышенных доз калийных удобрений может приводить к избыточному накоплению данного элемента в растениях. При внесении высоких доз калийных удобрений содержание калия в растениях превышает нормативные показатели, поэтому доза K_{280} может применяться только на сбалансированном фоне $N_{60}P_{90}$.

При выборе оптимальной дозы удобрений необходимо учитывать, что при недостатке фосфора в почве внесение азота и калия со временем ещё больше снижает содержание его в растениях.

Применение азотных, фосфорных и калийных удобрений может приводить к переходу в разряд дефицитных других элементов питания, в частности, микроэлементов. Микроэлементы повышают эффективность азота, фосфора и калия и их поступления в растения. Микроэлементы влияют на передвижение и перераспределение минеральных элементов в растении. Так, цинк изменяет проницаемость мембран для калия и магния. При внесении на торфяных почвах меди увеличивается усвояемость фосфора. Роль медных удобрений возрастает при известковании почв. Допустимый уровень содержания основных микроэлементов в грубых кормах составляет (мг/кг): железо — 100, медь — 30, цинк — 30, кобальт — 1,0, йод — 2,0. Изменения в содержании микроэлементов в сене многолетних злаковых трав в зависимости от доз вносимых удобрений представлены в таблице 4.

Таблица 4 – Содержание микроэлементов в сене многолетних злаковых трав (среднее за 2008-2010 гг.)

Рописия	Fe	Cu	Zn	Co	Mn	I
Вариант						
Без удобрений	83,0	7,8	25,2	0,060	95,7	0,25
$N_{30}P_{60}K_{120}$	71,3	5,6	17,3	0,053	94,8	0,16
$N_{30}P_{60}K_{120}+M/9$	79,3	6,9	16,8	0,062	105,7	0,15
$N_{60}P_{90}K_{180} + M/9$	76,0	7,8	22,9	0,055	120,9	0,15
$N_{60}P_{90}K_{240} + M/3$	64,7	8,3	23,4	0,059	120,0	0,17

Содержание микроэлементов в сене злаковых трав при оптимальной системе внесения удобрений находится в пределах допустимых уровней содержания их в кормах. Повышенные дозы калийных удобрений способствуют увеличению содержания в растениях цинка, марганца, меди и снижению железа.

Заключение. Результаты трехлетних исследований позволяют сформулировать следующие предложения производству. При залужении многолетними злаковыми травами сенокосов на низинных торфяно-болотных почвах с низким содержанием фосфора (200 мг/кг почвы), калия (300 мг/кг почвы) и загрязнённых радионуклидами ¹³⁷Сѕ и

⁹⁰Sг целесообразно применять следующие наиболее оптимальные дозы минеральных удобрений: азотные — 60 кг/га д.в., фосфорные — 60-90 кг/га д.в., калийные — 180-240 кг д.в. и медные — 200 г/га в виде некорневой подкормки. При данной системе удобрений отмечается наиболее высокая урожайность многолетних трав, наибольшее снижение коэффициентов перехода радионуклидов и наилучшие показатели зоотехнического качества кормов.

Литература

- 1. Рекомендации по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь / И.М. Богдевич [и др].—Минск 2008 г. -74 с.
- 2. Агрохимия : учеб. пособие / И. Р. Вильдфлуш [и др.]. Минск : Ураджай, 2000. 319 с
- 3. Карпенко, А. Ф. Эколого-экономические проблемы агропроизводства Гомельской области после Чернобыльской катастрофы : монография / А. Ф. Карпенко. Брянск : Дельта, 2012. 258 с.
- 4. Лапа, В. В. Оптимальные дозы удобрений под сельскохозяйственные культуры (рекомендации) / В. В. Лапа, В. Н. Босак ; РУП «Ин-т почвоведения и агрохимии». Минск, 2002. 25 с.
- 5. Подоляк, А. Г. Влияние агрохимических и агротехнических приемов улучшения основных типов лугов Белорусского Полесья на поступление в травостои 137 Cs и 90 Sr : автореф. дис. ...канд. с-х. наук : 06.01.04 / Подоляк А.Г. ; НИРУП «Институт почвоведения и агрохимии». Минск, 2002. 19 с.
- 6. Научные основы реабилитации сельскохозяйственных территорий загрязненных в результате крупных радиационных аварий / Н. Н. Цыбулько [и др.]; под общ. ред. Н. Н. Цыбулько. Минск: Институт радиологии, 2011. 438 с.
- 7. Прогнозирование накопления 137 Cs и 90 Sr в травостоях основных типов лугов Белорусского Полесья по агрохимическим свойствам почв / А. Г. Подоляк [и др.] // Радиационная биология. Радиоэкология. -2005. -T. 45, № 1. -C. 100-111.
- 8. Урожай и содержание основных элементов питания в многолетних злаковых травах при возделывании на осушенной торфяно-болотной почве / С. А. Касьянчик [и др.] // Вес. Нац. акад. навук Беларусі. Сер. аграрных навук. 2007. № 1. С. 42-48.

(поступила 11.03.2015 г.)