Н.А. ЯЦКО, Е.В. ЛЕТУНОВИЧ

МОЛОЧНАЯ ПРОДУКТИВНОСТЬ КОРОВ ПРИ ВКЛЮЧЕНИИ В СОСТАВ КОМБИКОРМОВ ЭНЕРГО-ПРОТЕИНОВОЙ ДОБАВКИ

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины»

Скармливание коровам добавки с «защищенным» протеином снижает уровень мочевины в крови на 22,2 %, АСТ – на 12,4 %, АЛТ – на 5,3 %, что свидетельствует о нормализации азотистого обмена в рубце. Использование энерго-протеиновой добавки в составе комбикорма для коров обеспечивает повышение молочной продуктивности на 7,8% при снижении затрат кормов на 9,9 %, повышение эффективности использования протеина на 9,6 %, что позволят получить годовой экономический эффект 360,6 тыс. рублей.

Ключевые слова: энерго-протеиновая добавка, коровы, молочная продуктивность, комбикорма, затраты кормов.

N.A. YATSKO, E.V. LETUNOVICH

MILK YIELD OF COWS AT INCLUSION OF ENERGY-PROTEIN SUPPLEMENT INTO COMPOUND FEEDS

Vitebsk State Academy of Veterinary Medicine

Feeding cows with supplements with «protected» protein lowers blood urea in the blood by 22,2 %, ACT – by 12,4 %, ALT – by 5,3 %, indicating normalization of nitrogen metabolism in rumen. Using energy and protein supplements in compound feeds for cows provides increased milk production by 7,8 % while reducing feed costs by 9,9 %, more efficient use of proteins by 9,6 %, which will provide annual economic effect of 360,6 thousand rubles.

Keywords: energy and protein supplement, cows, milk yield, compound feeds, feed costs.

Введение. Молочная продуктивность коров во многом определяется уровнем и полноценностью кормления в соответствии с их потребностями в питательных веществах и энергии в разные физиологические периоды и фазы лактации. При этом у высокопродуктивных коров возрастают требования к качеству кормов, балансированию рационов по научно-обоснованным нормам с учетом новых данных, полученных за последнее время в области физиологии питания и кормления жвачных животных [1].

Высокопродуктивные коровы наибольшую потребность в энергии и протеине испытывают в первые три месяца после отела. Часто за счет кормов покрыть потребности животных в энергии не удается, в связи с чем у них проявляется отрицательный энергетический баланс,

который ведет к тому, что коровы начинают интенсивно использовать ткани организма для синтеза молока. Это сопровождается резким снижением упитанности животных, потеря живой массы достигает у них 1,5-2,0 кг в сутки. У таких животных вскоре резко снижается молочная продуктивность, они трудно осеменяются. Все это ведет к большим экономическим потерям, связанным с недополучением молока, ухудшением его качества, преждевременной выбраковкой животных. Особенно остро эти явления протекают у первотелок, так как потребности в энергии и питательных веществах у них значительно выше, чем у взрослых коров. По этой причине происходит выбытие значительного числа животных, причем наиболее продуктивных [2].

Важной задачей при организации кормления высокопродуктивных коров в первой половине лактации является балансирование их рационов по энергии и протеину. Единственным источником энергии является сухое вещество корма, потребление которого на 100 кг живой массы возрастает с 2,65 при удое 12 кг до 4,4 кг при удое 40 кг, а концентрация обменной энергии в 1 кг сухого вещества увеличивается с 8,5 до 11,2 МДж. Среднее потребление сухого вещества составляет 2,5-3,5 % от живой массы коров, у высокопродуктивных животных оно достигает 4,2 %. Повышение концентрации энергии и потребления сухого вещества достигается за счет улучшения качества травяных и концентрированных кормов, а также увеличения количества концентратов в рационе [3].

С повышением продуктивности животных должна возрастать концентрация сырого протеина в сухом веществе рациона с 10,9 % при удое 12 кг до 14,1 при удое 24 кг и до 17,5% при удое 40 кг, а в зарубежных странах норма протеинового питания увеличена до 19 % от сухого вещества рациона. При более высокой продуктивности необходимо нормировать рационы и по содержанию незаменимых аминокислот [3, 4, 5].

У жвачных животных решающее влияние на обеспеченность организма протеином и аминокислотами оказывают микробиологические процессы в преджелудках и синтез микробного белка. Основным местом усвоения белка и аминокислот у них, как и у других животных, является тонкий кишечник, поэтому потребность жвачных обеспечивается тем протеином, который поступает из сложного желудка в кишечник. Важным источником снабжения аминокислотами организма жвачных является та часть кормового протеина, которая не гидролизуется в рубце.

Максимальный рост микробного белка может быть обеспечен при создании оптимальных условий ферментации в рубце. Важно поддерживать рН на уровне 6,2-6,5, что достигается сбалансированным одно-

типным кормлением в соответствии с потребностями коров в питательных веществах и энергии [1, 6].

Микроорганизмы рубца частично используют аминокислоты и пептиды, полученные при гидролизе протеина корма, большая же часть аминокислот образуется из аммония, высвобожденного из протеина небелковых соединений и из азотистых соединений микроорганизмов. Для микробного синтеза необходим расщепляемый в рубце протеин в количестве 7,8 г на 1 МДж обменной энергии. Микроорганизмы синтезируют полноценный белок, содержащий все незаменимые аминокислоты, в том числе и аминокислоты, необходимые для синтеза молочного белка (метионин, лизин, лейцин и гистидин). Для суждения об обеспеченности микроорганизмов рубца азотом определяют баланс его в рубце. Баланс может быть положительным или отрицательным. Отрицательный баланс указывает на то, что в рубце не хватает азота, положительный – на избыточное поступление его с кормом. При отрицательном балансе азота в рубце снижается синтез микробного белка. Это наблюдается, когда содержание кормового азота в сухом веществе рациона менее 9 %, что в практических условиях бывает крайне редко. При избыточном поступлении легкогидролизуемого протеина микробы рубца расщепляют белка намного больше, чем требуется для их роста, при этом образуется чрезмерное количество аммиака, который превращается в печени в мочевину и выделяется из организма с мочой. Происходят потери азота, перегрузка печени, нарушение белкового и углеводного обмена, резко снижается эффективность использования протеина корма [7, 8].

Количество синтезированного микробиального белка в рубце зависит не только от поступления азота, но и от обеспеченности энергией, макро- и микроэлементами, витаминами.

При сбалансированном кормлении коров поступление микробного белка из рубца в кишечник составляет 65 % от общего количества нормируемого сырого протеина. Остальные 35 % животные получают за счет нерасщепляемой в рубце фракции (транзитного, кишечного) протеина.

Поэтому важным вопросом протеинового питания жвачных является снижение распадаемости протеина корма в рубце без существенного изменения переваримости его в кишечнике. Сделать это можно путем подбора в рационе кормов, протеин которых устойчив к распаду в рубце. Однако набор таких кормовых средств ограничен или экономически не оправдан. Для решения этой проблемы в настоящее время предложен ряд способов обработки кормовых средств, способствующих снижению преобразования протеина в рубце [8, 9, 10].

В связи с вышеизложенным, целью нашей работы явилась разработка состава энерго-протеиновой добавки (ЭПД) на основе местных источников белкового и энергетического сырья и изучение ее влияния на эффективность использования протеина корма и продуктивные показатели коров.

Материал и методика исследований. Опыт проводился в СПФ «Мнюто» ОАО «Глубокский МКК» Глубокского района Витебской области. Для этого по принципу пар-аналогов были подобраны две группы дойных коров в возрасте 2-3 лактации, по 10 голов в каждой, средней живой массой 530-550 кг. Опытная и контрольная группы животных на протяжении опыта содержались в одинаковых условиях согласно зоогигиеническим нормативам данной половозрастной группы, кормление осуществлялось по принятой на комплексе технологии. Суточный рацион раздавали животным два раза в день в виде кормосмеси.

Предварительный период продолжался 15 дней. В ходе него производился контроль продуктивности животных, изучалась поедаемость кормов (таблица 1).

Таблица 1 – Схема опыта

Tuoninga i Caema onbita					
		Продолжительность			
Группы	Кол-во	опыта, дней		Особенности	
животных	голов	предвари-	учетный	кормления	
животных	в группе	тельный	период	кормления	
		период			
Контрольная	10	15	50	ОР+комбикорм с ЭПД	
				без экструзии	
Опытная	10	15	50	OP + комбикорм c	
				ЭПД после экструзии	

В состав основного рациона входили: сено из злаковых многолетних трав, силок злаковых многолетних трав, силок кукурузный, комбикорм, шрот подсолнечный, патока кормовая.

Кормление подопытных коров проводилось по нормам РАСХН [4] в соответствии с потребностями животных на поддержание жизненных функций организма, продуктивностью, возрастом и периодом лактапии.

Различия в кормлении между группами заключались в том, что контрольная и опытная группы получали один и тот же комбикорм, содержащий ЭПД, в состав которой входили шрот рапсовый, зерно рапса и минеральные компоненты, но для опытной группы эта ЭПМД

была подвергнута баротермической обработке на экструдере «Инста – Про модель 2500» производства США.

Состав добавки разработан на основе использования зерна рапса, рапсового шрота и минеральных компонентов. После экструдирования добавка включалась в состав комбикорма в количестве 20 %.

Качественный состав протеина определяли на животных при помощи фистулы, установленной на рубце, в условиях физиологического корпуса РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству».

С целью определения влияния введенной ЭПД на продуктивность коров и качество получаемого молока в ходе опыта у подопытных животных определяли суточный удой и состав молока. Молочную продуктивность коров учитывали по данным контрольных доек один раз в 2 дня. С целью контроля динамики биохимического состава молока у подопытных животных отбирались средние пробы, в которых определяли содержание белка, жира, лактозы и аминокислотный состав. Учет поедаемости кормов проводили путем контрольного кормления один раз в 10 дней и взвешивания задаваемых кормов, а также несъеденных остатков.

Результаты эксперимента и их обсуждение. Анализ потребления кормов коровами показывает, что животные контрольной и опытной групп на протяжении опыта приняли примерно одинаковое количество грубых, сочных и концентрированных кормов (таблица 2).

Таблица 2 – Состав рационов подопытных животных (по фактически съеденным кормам)

	Контрольная группа		Опытная группа	
Корма	кол-во	структура	кол-во	структура
	корма, кг	рациона, %	корма, кг	рациона, %
Сено из злаковых				
многолетних трав	1,0	2,6	1,0	2,6
Силаж из злаковых				
многолетних трав	14,7	17,0	14,5	16,7
Силос кукурузный	24,2	28,2	24,5	28,5
Комбикорм	9,0	43,6	9,0	43,6
Шрот подсолнеч-				
ный	1,0	5,1	1,0	5,1
Патока кормовая	1,0	3,5	1,0	3,5

Структура рационов не имела существенных различий между контрольной и опытной группами животных.

В связи с тем, что рационы подопытных коров обеих групп были фактически одинаковыми, поступление энергии, сырого протеина, углеводов и жиров оказалось практически идентичным (таблица 3). Не отмечено значительных различий в поступлении минеральных и других биологически активных веществ.

Таблица 3 – Содержание элементов питания в рационах

Таблица 3 – Содержание элементов питания в рационах Элемент питания Контрольная Опытна				
Элемент питания	группа	группа		
V опиония отнични	21,5	21,5		
Кормовые единицы ЭКЕ		, , ,		
	23,1	23,1		
Обменная энергия, МДж	230,7	231,0		
Сухое вещество, кг	21,4	21,4		
Сырой протеин, г	3253	3261		
Переваримый протеин, г	2167	2167		
Нерасщепляемый протеин, г	1000	1163		
Расщепляемый протеин, г	2253	2098		
Сырой жир, г	894	896		
Сырая клетчатка, г	3137	3155		
Крахмал, г	3423	3244		
Сахар, г	1319	1364		
Кальций, г	163	163		
Фосфор, г	118	118		
Магний, г	60	60		
Сера, г	65	65		
Калий, г	184	184		
Железо, мг	4910	4915		
Медь, мг	309	309		
Цинк, мг	1631	1633		
Марганец, мг	1754	1755		
Кобальт, мг	16	16		
Йод, мг	19	19		
Селен, мг	5	5		
Каротин, мг	1249	1248		
Витамин D тыс. МЕ	23,4	23,4		
Витамин Е, мг	891	892		

Различались рационы по содержанию расщепляемого и нерасщепляемого в рубце протеина, что было связано с изменениями в составе протеина при экструдировании ЭПД.

Содержание в рационе витаминов и микроэлементов соответствовало нормативным требованиям вследствие включения в комбикорм адресного премикса.

Концентрация энергии в 1 кг сухого вещества рационов составила $10.8\,\mathrm{MДж}$, уровень сырого протеина $-15.2\,\%$, сырой клетчатки $-14.7-14.8\,\%$, крахмала + сахара $-21.5-22.2\,\%$, отношение кальция к фосфору находилось в пределах 1.4:1.

Включение в рацион опытной группы ЭПД определенным образом сказалось на фракционном составе протеина (таблица 4).

Таблица 4 – Фракционный состав протеина рационов подопытных

коров

	Группы				
Показатели	контрольная		опытная		
	Γ	%	Γ	%	
Содержание сырого про-					
теина	3253,3	100	3261,8	100	
В т.ч. расщепляемого	2252,4	69,2	2098,3	64,3	
Нерасщепляемого	1000,9	30,8	1163,5	35,7	
Расщепляемый протеин					
на 1 МДж ОЭ, г	9,8	-	9,1	-	

Так, в рационе опытной группы по сравнению с контрольной количество расщепляемого протеина уменьшилось с 69,2 до 64,3 %, одновременно увеличилась концентрация нерасщепляемой фракции на 16,2% и составила 35,7 % от сырого протеина, что является оптимальным для коров в середине лактации. В расчете на 1 МДж обменной энергии количество расщепляемой фракции протеина в контрольной группе составило 9,8 г, в опытной – 9,1 г при норме 7,8 г. Этот показатель оказался на 7,1 % ниже в опытной группе по сравнению с контрольной. Следовательно, использование в рационе лактирующих коров ЭПД оказало существенное влияние на обеспечение животных расщепляемым и нерасщепляемым протеином.

Различия в качественном составе протеина в рационах контрольной и опытной групп определенным образом сказались на молочной продуктивности подопытных животных и составе молока (таблица 5).

За период опыта среднесуточный удой коров при скармливании им добавки с «защищенным» от распада в рубце протеином оказался на 7,8 % (P<0,05) выше по сравнению с контрольной группой. Возрос также валовой надой 4%-го молока на 125,0 кг, или на 10,9 %.

Таблица 5 – Молочная продуктивность подопытных коров и затраты

кормов

Показатели	Группы		
Показатели	контрольная	опытная	
Среднесуточный удой, кг	23,2±0,36	25,0**±0,24	
Валовой надой натурального молока, кг	1160,0	1250,0	
Среднесуточный удой 4%-го молока, кг	22,9	25,4	
Валовой надой 4%-го молока, кг	1145,0	1270,0	
Затраты кормов на 1 кг молока 4%-й			
жирности:			
кормовых единиц	0,94	0,85	
сырого протеина, г	142	128	

Примечание: ** - Р<0,01

Произошли изменения и в биохимическом составе молока. Так, содержание жира в молоке коров опытной группы выросло с 4,0 до 4,2 %, или на 0,2 п.п., в то время как в контрольной группе этот показатель остался на прежнем уровне (таблица 6).

Таблица 6 – Качественные показатели молока

	Контрольная группа		Опытная группа	
Показатели	в начале	в конце	в начале	в конце
	опыта	опыта	опыта	опыта
Содержание жира, %	4,0±0,15	3,8±0,40	4,0±0,08	4,2±0,18
Содержание белка, %	$3,2\pm0,06$	$3,1\pm0,11$	$3,1\pm0,09$	$3,0\pm0,10$
Содержание лактозы, %	$4,3\pm0,17$	$4,2\pm0,29$	4,4±0,10	4,1±0,14

Это явилось следствием снижения токсического действия избыточного количества аммиака на микрофлору рубца. В результате интенсивность микробиологических процессов активизировалась, что способствовало синтезу летучих жирных кислот, в том числе и уксусной, являющейся предшественником жира молока. Содержание белка в молоке существенно не изменилось и оказалось практически на одном уровне в опытной и контрольной группах.

Изучение уровня белка в молоке опытных животных и его аминокислотного состава показало, что увеличение доли «защищенного» протеина в рационе оказало влияние на его качественный состав (таблица 7).

Так, уровень метионина и гистидина увеличился более чем в 2 раза, количество лизина и триптофана возросло на 21 и 40 %, соответственно. По остальным аминокислотам наблюдались незначительные коле-

бания в сторону увеличения или уменьшения по сравнению с контролем.

Таблица 7 – Аминокислотный состав молока

Поморожати	Группы		
Показатели	контрольная	опытная	
Получено белка за опытный период, кг	37,12	38,75	
Содержание аминог	кислот, г/кг		
Лизин	2,42±0,31	2,93±0,21	
Метионин	$0,92\pm0,08$	$2,19\pm0,12$	
Лейцин	3,51±1,01	$3,56\pm1,14$	
Гистидин	$0,91\pm0,06$	$2,02\pm0,27$	
Триптофан	$1,05\pm0,15$	$1,47\pm0,16$	
Треонин	$1,70\pm0,21$	$1,62\pm0,23$	
Изолейцин	$2,40\pm0,41$	$2,41\pm0,41$	
Фенилаланин	$1,41\pm0,24$	$1,35\pm0,26$	
Аргинин	$1,26\pm0,17$	$1,21\pm0,18$	
Валин	$1,64\pm0,23$	$1,42\pm0,29$	

Расчет экономической эффективности использования ЭПД из местного белкового сырья в составе комбикорма для коров повышает его стоимость на 13,8 %, но при этом увеличивается молочная продуктивность на 7,7 %, снижаются затраты кормов на 9,6 % и повышается эффективность использования протеина на 9,9 %, что обеспечивает получение 360,0 тыс. рублей прибыли на 1 голову в год.

Произведенный расчет валютных средств, которые необходимы для приобретения импортного белкового сырья с высоким содержанием нерасщепляемого протеина вместо предлагаемой нами ЭПД на основе местного белкового сырья составляет 5940 тыс. руб. (таблица 8).

Таблица 8 — Расчет экономии валютных средств на приобретение импортного белкового сырья с расщепляемостью протеина 60-65 % для высокопродуктивных коров на первые 150 дней лактации

1 7 3			
Показатели	Источники белкового сырья		
Показатели	ЭПД	соевый шрот	
Требуется белкового сырья на первые 150			
дней лактации с низкой расщепляемостью			
протеина, кг	1009,9	913,9	
Стоимость 1 кг белкового сырья, руб.	4100	6500	
Полная стоимость белкового сырья, тыс.			
руб.	4140,6	5940,4	
Экономия на 1 голову за первую половину			
лактации, тыс. руб.	-	1799,8	

Это на 1799,8 тыс. руб. больше, чем в случае использования ЭПД на основе местного белкового сырья.

Заключение. 1. Включение в рацион лактирующих коров ЭПД, состоящей из зерна рапса, шрота рапсового и минеральных компонентов, позволяет сбалансировать рацион по протеину с учетом его физикохимических свойств и обеспечить соотношение расщепляемого и нерасщепляемого сырого протеина на уровне 64:36 против 69:31 в контроле, что оказывает положительное влияние на обмен веществ и продуктивность животных.

- 2. Скармливание коровам добавки с «защищенным» протеином снижает уровень мочевины в крови на 22,2 %, АСТ на 12,4 %, АЛТ на 5,3 %, что свидетельствует о нормализации азотистого обмена в рубце, повышении эффективности использования азота корма и создании лучших условий для синтеза молока в организме животных, а также о нормализации работы печени.
- 3. Использование ЭПД в составе комбикорма для коров обеспечивает повышение молочной продуктивности на 7,8 % при снижении затрат кормов на 9,9 %, повышение эффективности использования протеина на 9,6 %, что позволят получить годовой экономический эффект 360,6 тыс. рублей.
- 4. Произведенный расчет потребности валютных средств, которые необходимы для приобретения импортного белкового сырья с содержанием расщепляемого протеина не более 60-65 % вместо ЭПД на основе местного белкового сырья, потребуется 5940,4 тыс. рублей на 1 голову, что на 1799,8 тыс. рублей больше, чем при использовании разработанной ЭПД.

Литература

- 1. Топорова, Л. В. Теория и практика кормления высокопродуктивных молочных коров / Л. В. Топорова // Ветеринария сельскохозяйственных животных. 2005. № 7. С. 67-74.
- 2. Технологическое сопровождение животноводства: новые технологии : практ. пособие / Н. А. Попков [и др.]. Жодино, 2010. 496 с.
- 3. Повышение протеиновой питательности кормов для молочных коров : методические положения. Боровск, 2010. 36 с.
- 4. Нормы и рационы кормления сельскохозяйственных животных / под. ред. А. П. Калашникова [и др.]. 3-е изд., перераб. и доп. Москва, 2003. 456 с.
- 5. Пахомов, И. Я. Полноценное кормление высокопродуктивных коров : практическое пособие / И. Я. Пахомов, Н. П. Разумовский. Витебск : ВГАВМ, 2006. 109 с.
- 6. Оценка энергетической и протеиновой питательности кормов и рационов для крупного рогатого скота: методические рекомендации. Минск, 1989. 48 с.
- 7. Мостовой, Д. Е. Молоко у коровы на языке / Д. Е. Мостовой // С.-х. вестник. 2002. № 1. С. 12-13.
- 8. Погосян, Д. Влияние «защищенного» протеина на молочную продуктивность коров / Д. Погосян // Молочное и мясное скотоводство. -2008. -№ 6. -C. 31-32.

- 9. Протеиновое питание молочных коров : рекомендации по нормированию. Боровск, 1998.-28 с.
- 10. Руководство по производству молока, выращиванию и откорму молодняка крупного рогатого скота: отраслевой регламент / А. М. Лапотко [и др.]. Несвиж, 2006. $367\,$ с.

Поступила 14.03.2014 г.